Природные кристаллы - разновидности, свойства, добыча и применение. Общие свойства кристаллов

Лекция 16

Физические свойства кристаллов

Изучением структуры и физических свойств твердых тел занимается физика твердого тела. Она устанавливает зависимость физических свойств от атомной структуры вещества, разрабатывает методы получения и исследования новых кристаллических материалов, обладающих заданными характеристиками.

Физические свойства кристаллов определяются:

1) природой химических элементов, входящих в состав кристаллов;

2) типом химической связи;

3) геометрическим характером структуры, т. е. взаимным расположением атомов в кристаллической структуре;

4) несовершенством структуры, т. е. наличием дефектов.

С другой стороны, именно по физическим свойствам кристаллов мы обычно судим о типе химической связи.

О прочности кристаллов проще всего можно судить по их механическим и термическим свойствам. Чем прочнее кристалл, тем больше его твердость и тем выше его температура плавления. Если изучать изменение твердости с изменением состава в ряду однотипных веществ и сопоставлять полученные данные с соответствующими значениями для температур плавления, то можно заметить «параллелизм» в изменении этих свойств.

Напомню, что самой характерной особенностью физических свойств кристаллов является их симметрия и анизотропия . Анизотропная среда характеризуется зависимостью измеряемого свойства от направления измерения.

Мы уже говорили, что кристаллохимия тесно связана с кристаллографией и физикой. Поэтому, основной задачей кристаллофизики (раздела кристаллографии, изучающего физические свойства кристаллов) является изучение закономерностей физических свойств кристаллов от их строения, а также зависимости этих свойств от внешних воздействий.

Физические свойства веществ можно подразделить на две группы: структурно чувствительные и структурно нечувствительные свойства. Первые зависят от атомной структуры кристаллов, вторые - главным образом от электронного строения и типа химической связи. Примером первых могут служить механические свойства (масса, плотность, теплоемкость, температура плавления и др.), примером вторых - тепло - и электропроводность , оптические и др. свойства.

Так, хорошая электропроводность металлов, обусловленная наличием свободных электронов, будет наблюдаться не только в кристаллах, но и в расплавленных металлах.

Ионный характер связи проявляется, в частности, в том, что многие соли, например, галогениды щелочных металлов, растворяются в полярных растворителях, диссоциируя на ионы. Однако факт отсутствия растворимости не может еще служить доказательством наличия у соединения неполярной связи. Так, энергия связи, например, у оксидов настолько больше энергии связи щелочных галогенидов, что диэлектрическая постоянная воды уже недостаточна для отрыва ионов от кристалла.

Кроме того, некоторые соединения, преимущественно с гомеополярным типом связи, под влиянием большой диэлектрической постоянной полярного растворителя могут в растворе диссоциировать на ионы, хотя в кристаллическом состоянии ионными соединениями они могут и не быть (например НСl, НВr).

В гетеродесмических соединениях некоторые свойства, например механическая прочность соединений, зависят только от одного (слабейшего) типа связи.

Поэтому, кристалл можно рассматривать, с одной стороны, как прерывистую (дискретную) среду. С другой стороны – кристаллическое вещество можно рассматривать как сплошную анизотропную среду. В этом случае физические свойства, проявляющиеся в определенном направлении, не зависят от трансляций (переносов). Это позволяет описывать симметрию физических свойств с помощью точечных групп симметрии.

Описывая симметрию кристалла, мы принимаем во внимание только внешнюю форму, т. е. рассматривает симметрию геометрических фигур. П. Кюри показал, что симметрия материальных фигур описывается бесконечным числом точечных групп, которые в пределе стремятся к рассмотренным ранее семи предельным группам симметрии (семейства вращающегося конуса, неподвижного конуса, вращающегося цилиндра, скрученного цилиндра, неподвижного цилиндра, семейства шара с вращающимися точками поверхности, семейства неподвижного шара).

Предельными точечными группами ‑ группами Кюри – называются точечные группы, содержащие оси бесконечных порядков. Существует всего семь предельных групп: ¥, ¥mm, ¥/m, ¥22, ¥/mm, ¥/¥, ¥/¥mm.

Связь между точечной группой симметрии кристалла и симметрией его физических свойств сформулировал немецкий физик Ф. Нейманн: материал в отношении физических свойств обнаруживает симметрию того же рода, что и его кристаллографическая форма. Это положение известно как принцип Неймана.

Ученик Ф. Немана немецкий физик В. Фойгт существенно уточнил указанный принцип и сформулировал его следующим образом: группа симметрии любого физического свойства должна включать в себя все элементы точечной группы симметрии кристалла.

Рассмотрим некоторые физические свойства кристаллов.

Плотность кристаллов.

Плотность вещества зависит от кристаллической структуры вещества, его химического состава, коэффициента упаковки атомов, валентностей и радиусов слагающих ее частиц.

Плотность изменяется с изменением температуры и давления, т. к. эти факторы вызывают расширение или сжатие вещества.

Зависимость плотности от структуры можно продемонстрировать на примере трех модификаций Al2SiO5:

· андалузит (r = 3,14 – 3,16 г/см3);

· силлиманит (r = 3,23 – 3,27 г/см3);

· кианит (r = 3,53 – 3,65 г/см3).

С увеличением коэффициента упаковки кристаллической структуры плотность вещества возрастает. Например, при полиморфном переходе графита в алмаз с изменением координационного числа атомов углерода с 3 до 4 соответственно возрастает и плотность от 2,2 до 3,5 г/см3).

Плотность реальных кристаллов обычно меньше, чем расчетная плотность (идеальных кристаллов) из-за присутствия дефектов в их структурах. Плотность алмаза, например, колеблется в пределах 2,7 – 3,7 г/см3. Таким образом, по уменьшению реальной плотности кристаллов можно судить о степени их дефектности.

Плотность изменяется и с изменением химического состава вещества при изоморфных замещениях – при переходе от одного члена изоморфного ряда к другому. Например, в ряду оливинов (Mg , Fe 2+ )2[ SiO 4 ] плотность возрастает по мере замены катионов Mg2+ на Fe2+ от r = 3,22 г/см3 у форстерита Mg 2 [ SiO 4 ] до r = 4,39 г/см3 у фаялита .

Твердость.

Под твердостью подразумевается степень сопротивления кристалла внешнему воздействию. Твердость не является физической постоянной. Ее величина зависит не только от изучаемого материала, но и от условий измерения.

Твердость зависит от:

· типа структуры;

· коэффициента упаковки (удельного веса);

· заряда образующих кристалл ионов.

Например, полиморфные модификации CaCO3 – кальцит и арагонит – имеют плотности 3 и 4 соответственно и отличаются разной плотностью их структур:

· для структуры кальцита с КЧСа = 6 ‑ r = 2,72;

· для структуры арагонита с КЧСа = 9 ‑ r = 2,94 г/см3).

В ряду одинаково построенных кристаллов твердость возрастает у увеличением зарядов и уменьшением размеров катионов. Присутствие в структурах достаточно крупных анионов типа F-, OH-, молекул Н2О понижает твердость.

Грани разных форм кристаллов обладают различной ретикулярной плотностью и отличаются по своей твердости. Так, наибольшей твердостью в структуре алмаза обладают грани октаэдра (111), имеющие большую ретикулярную плотность по сравнению с гранями куба (100).

Способность к деформации.

Способность кристалла к пластической деформации определяется, прежде всего, характером химической связи между его структурными элементами.

Ковалентная связь , обладающая строгой направленностью, резко ослабевает уже при незначительных смещениях атомов относительно друг друга. Поэтому кристаллы с ковалентным типом связи (Sb, Bi, As, se и др.) не проявляют способность к пластической деформации.

Металлическая связь не имеет направленного характера и при смещении атомов относительно друг друга меняется слабо. Это определяет высокую степень пластичности металлов (ковкость). Наиболее ковкими являются те металлы, структуры которых построены по закону кубической плотнейшей упаковки, имеющей четыре направления плотноупакованных слоев. Менее ковки металлы с гексагональной плотнейшей упаковкой – с одним направлением плотнейших слоев. Так, среди полиморфных модификаций железа a-Fe и b-Fe ковкостью почти не обладают (решетка I типа), тогда как g-Fe с кубической плотнейшей упаковкой (гранецентрированная кубическая решетка) – ковкий металл как Cu, Pt, Au, Ag и др.

Ионная связь не имеет направленного характера. Поэтому типичные ионные кристаллы (NaCl, CaF2, CaTe и др.) такие же хрупкие, как кристаллы с ковалентной связью. Но в то же время они обладают достаточно высокой пластичностью. Скольжение в них протекает оп определенным кристаллографическим направлениям. Это объясняется тем, что в структуре кристалла можно выделить сетки (110), образованные либо одними ионами Na+, либо ионами Cl-. При пластической деформации одна плоская сетка передвигается относительно соседней таким образом, что ионы Na+ скользят вдоль ионов Cl-. Разноименность зарядов ионов в соседних сетках препятствует разрыву, и они остаются параллельными своему исходному положению. Скольжение вдоль этих слоев протекает при минимальном нарушении в расположении атомов и является наиболее легким.

Тепловые свойства кристаллов.

Теплопроводность тесно связана с симметрией. Наиболее наглядно это можно продемонстрировать на следующем опыте. Покроем тонким слоем парафина грани трех кристаллов: куба, гексагональной призмы, прямого параллелепипеда. Острием тонкой раскаленной иглы прикоснемся к каждой из граней этих кристаллов. По очертаниям пятен плавления можно судить о скорости распространения теплоты на плоскостях граней по различным направлениям.

На кристалле кубической сингонии контуры пятен плавления на всех гранях будут иметь форму круга, что указывает на одинаковую скорость распространения теплоты по всем направлениям от точки касания горячей иглой. Форма пятен в идее кругов на всех гранях кубического кристалла связана с его симметрией.

Форма пятен на верхней и нижней гранях гексагональной призмы будет также иметь форму круга (скорость распространения теплоты в плоскости, перпендикулярной главной оси кристалла средней категории одинакова по всем направлениям). На гранях гексагональной призмы пятна плавления будут иметь форму эллипсов, так как перпендикулярно этим граням проходят оси 2-го порядка.

На всех гранях прямого параллелепипеда (кристалл ортогональной сингонии) пятна плавления будут иметь форму эллипса, т. к. перпендикулярно этим граням проходят оси 2-го порядка.

Итак, скорость распространения теплоты по телу кристалла находится в прямой зависимости от того, вдоль какого линейного элемента симметрии она распространяется. В кристаллах кубической сингонии поверхность распространения теплоты будет иметь форму сферы. Следовательно, в отношении теплопроводности кристаллы кубической сингонии являются изотропными, т. е. по всем направлениям равносвойственными. Поверхность теплопроводности кристаллов средней категории выражается эллипсоидом вращения (параллельно главной оси). В кристаллах низшей категор ии все поверхности теплопроводности имеют форму эллипсоида.

Анизотропия теплопроводности тесно связана со структурой кристаллического вещества. Так, наиболее плотным атомным сеткам и рядам соответствуют большие значения теплопроводности. Поэтому слоистые и цепочечные кристаллы имеют большие различия в направлениях теплопроводности.

Теплопроводность зависит также от степени дефектности кристалла – у более дефектных кристаллов она ниже, чем у синтетических. Вещество в аморфном состоянии обладает более низкой теплопроводностью, чем кристаллы того же состава. Например, теплопроводность кварцевого стекла значительно ниже теплопроводности кристаллов кварца. На этом свойстве основано широкое применение посуды из кварцевого стекла.

Оптические свойства.

Каждое вещество с определенной кристаллической структурой характеризуется своеобразными оптическими свойствами. Оптические свойства тесно связаны с кристаллическим строением твердых тел, его симметрией.

В отношении оптических свойств все вещества можно разделить на оптически изотропные и анизотропные. К первым относятся аморфные тела и кристаллы высшей категории, ко вторым – все остальные. В оптически изотропных средах световая волна, представляющая собой совокупность поперечных гармонических колебаний электромагнитной природы, распространяется с одинаковой скоростью во всех направления. При этом колебания вектора напряженности электрического и магнитного полей происходят также по всевозможным направлениям, но в плоскости, перпендикулярной направлению луча. Вдоль его направления происходит передача световой энергии. Такой свет называется естественным или неполяризованным (рисунок а, б).

В оптически анизотропных средах скорости распространения волны в разных направлениях могут быть различными. При определенных условиях может быть получен так называемый поляризованный свет , для которого все колебания вектора электрического и магнитного полей проходят в строго определенном направлении (рисунок в, г). На поведении такого поляризованного света в кристаллах основана методика кристаллооптических исследований с помощью поляризационного микроскопа.

Двойное лучепреломление света в кристаллах.

линейно поляризованным с взаимно перпендикулярными плоскостями колебаний. Разложение света на два поляризованных луча называется двойным лучепреломлением или двупреломлением.

Двупреломление света наблюдается в кристаллах всех сингоний, за исключением кубической. В кристаллах низшей и средней категории двупреломление происходит по всем направлениям, за исключением одного или двух направлений, называемых оптическими осями .

Явление двупреломления связано с анизотропией кристаллов. Оптическая анизотропность кристаллов выражается в том, что скорость распространения света в них различна по разным направлениям.

В кристаллах средней категории среди множества направлений оптической анизотропии существует одно единичное направление – оптическая ось , совпадающее с главной осью симметрии 3-го, 4-го, 6-го порядков. Вдоль этого направления свет идет не раздваиваясь.

В кристаллах низшей категории имеется два направления, вдоль которых свет не раздваивается. Сечения кристаллов, перпендикулярные этим направлениям, совпадают с оптически изотропными сечениями.

Влияние структурных особенностей на оптические свойства.

В кристаллических структурах со слоями из плотноупакованных атомов расстояние между атомами внутри слоя превышают расстояние между ближайшими атомами, расположенными в соседних слоях. Подобная упорядоченность приводит к более легкой поляризации, если вектор напряжения электрического поля световой волны будет параллелен плоскости слоев.

Электрические свойства.

Все вещества можно разделить на проводники, полупроводники и диэлектрики.

Некоторые кристаллы (диэлектрики) поляризуются под влиянием внешних воздействий. Способность диэлектриков поляризоваться – одно из их фундаментальных свойств. Поляризация – это процесс, связанный с созданием в диэлектрике под действием внешнего электрического поля электрических диполей.

В кристаллографии и физике твердого тела важное теоретическое практическое значение получили явления пьезоэлектричества и пироэлектричества.

Пьезоэлектрический эффект – изменение поляризации некоторых диэлектрических кристаллов при механической деформации. Величина возникших зарядов пропорциональна приложенной силе. Знак заряда зависит от типа кристаллической структуры. Пьезоэлектрический эффект возникает только в кристаллах, лишенных центра инверсии, т. е. имеющих полярные направления. Например, кристаллы кварца SiO2, сфалерита (ZnS).

Пироэлектрический эффект – появление электрических зарядов на поверхности некоторых кристаллов при их нагревании или охлаждении. Пироэлектрический эффект возникает только в диэлектрических кристаллах с единственным полярным направлением, противоположные концы которого не могут быть совмещены ни одной операцией данной группы симметрии. Появление электрических зарядов может происходить только по определенным, полярным направления. Грани, перпендикулярные этим направлениям, получают разные по знаку заряды: одна – положительный, а другая – отрицательный. Пироэлектрический эффект может возникнуть в кристаллах, относящихся к одному из полярных классов симметрии: 1, 2, 3, 4, 6, m, mm2, 3m, 4mm, 6mm.

Из геометрической кристаллографии следует, что направления, проходящие через центр симметрии, не могут быть полярными. Не могут быть полярными и направления, перпендикулярные плоскостям симметрии или осям четного порядка.

В классе пироэлектриков выделяют два подкласса. К первому относятся линейные пироэлектрики, у которых во внешнем поле электрическая поляризация линейно зависит от напряженности электрического поля. Например, турмалин NaMgAl3B3.Si6(O, OH)30.

Кристаллы второго подкласса называются сегнетоэлектриками. У них зависимость поляризации от напряженности внешнего поля носит нелинейный характер и поляризуемость зависит от величины внешнего поля. Нелинейная зависимость поляризации от напряженности электрического поля характеризуется петлей гистерезиса. Эта особенность сегнетоэлектриков предполагает сохранение у них электрической поляризации в отсутствии внешнего поля. Благодаря этому кристаллы сегнетовой соли (отсюда название сегнетоэлектрики) оказались надежными хранителями электрической энергии и регистраторами электрических сигналов, что позволяет их использовать в «ячейках памяти» ЭВМ.

Магнитные свойства.

Это способность тел взаимодействовать с магнитным полем, т. е. намагничиваться при помещении их в магнитное поле. В зависимости от величины магнитной восприимчивости различают диамагнитные, парамагнитные, ферромагнитные и антиферромагнитные кристаллы.

Магнитные свойства всех веществ зависят не только от особенностей их кристаллической структуры, но и от природы слагающих их атомов (ионов), т. е. магнетизм определяется электронным строением оболочек и ядер, а также орбитальным движением вокруг них электронов (спинами).

При внесении атома (иона) в магнитное поле изменяется угловая скорость движения электронов на орбите за счет того, что на первоначальное вращательное движение электронов вокруг ядра накладывается дополнительное вращательное движение, в результате чего атом получает дополнительный магнитный момент. При этом если все электроны с противоположными спинами в атоме сгруппированы попарно (рисунок А), то магнитные моменты электронов оказываются скомпенсированными и их суммарный магнитный момент будет равен нулю. Такие атомы называются диамагнитными, а вещества, состоящие из них – диамагнетиками . Например, инертные газы, металлы В-подгрупп – Cu, Ag, Au, Zn, Cd, большинство ионных кристаллов (NaCl, CaF2), а также вещества с преобладающей ковалентной связью – Bi, Sb, Ga, графит. В кристаллах со слоистыми структурами магнитная восприимчивость для направлений, лежащих в слое, значительной превышает таковую для перпендикулярных направлений.

При заполнении электронных оболочек в атомах электроны стремятся быть неспаренными. Поэтому существует большое количество веществ, магнитные моменты электронов, в атомах которых, расположены беспорядочно и при отсутствии внешнего магнитного поля в них не происходит самопроизвольная ориентация магнитных моментов (рисунок Б). Суммарный магнитный момент, обусловленный несвязанными попарно и слабо взаимодействующими друг с другом электронами, будет постоянным, положительным или несколько большим, чем у диэлектриков. Такие атомы называются магнитными, а вещества – парамагнетиками . При внесении парамагнетика в магнитное поле разориентированные спины приобретут некоторую ориентировку, в результате чего наблюдаются три типа упорядочения нескомпенсированных магнитных моментов – три типа явлений: ферромагнетизм (рисунок В), антиферромагнетизм (рисунок Г) и ферримагнетизм (рисунок Д).

Ферромагнитными свойствами обладают вещества, магнитные моменты атомов (ионов) которых направлены параллельно друг другу, в результате чего внешнее магнитное поле может усилиться в миллионы раз. Название группы связано с присутствием в ней элементов подгруппы железа Fe, Ni, Co.

Если магнитные моменты отдельных атомов антипараллельны и равны, то суммарный магнитный момент атомов равен нулю. Такие вещества называются антиферромагнетиками. К ним относятся оксиды переходных металлов – MnO, NiO, CoO, FeO, многие фториды, хлориды, сульфиды, селениды и др.

При неравенстве антипараллельных моментов атомов структуры кристаллов суммарный момент оказывается отличным от нуля и такие структуры обладают спонтанной намагниченность. Подобными свойствами обладают ферриты (Fe3O4, минералы группы граната).

Свойства кристаллов, форма и сингония (кристаллографические системы)

Важным свойством кристалла является определенное соответствие между разными гранями - симметрия кристалла. Выделяются следующие элементы симметрии:

1. Плоскости симметрии: разделяют кристалл на две симметричные половины, такие плоскости также называют "зеркалами" симметрии.

2. Оси симметрии: прямые линии, проходящие через центр кристалла. Вращение кристалла вокруг этой оси повторяет форму исходного положения кристалла. Различают оси симметрии 3-го, 4-го и 6-го порядка, что соответствует числу таких позиций при вращении кристалла на 360 o .

3. Центр симметрии: грани кристалла, соответствующие параллельной грани, меняются местами при вращении на 180 o вокруг этого центра. Комбинация этих элементов симметрии и порядков дает 32 класса симметрии для всех кристаллов. Эти классы, в соответствии с их общими свойствами, можно объединить в семь сингонии (кристаллографических систем). По трехмерным осям координат можно определить и оценить позиции граней кристаллов.

Каждый минерал принадлежит к одному классу симметрии, поскольку имеет один тип кристаллической решетки, который его и характеризует. Напротив, минералы, имеющие одинаковый химический состав, могут образовывать кристаллы двух и более классов симметрии. Такое явление называется полиморфизмом. Есть не единичные примеры полиморфизма: алмаз и графит, кальцит и арагонит, пирит и марказит, кварц, тридимит и кристобалит; рутил, анатаз (он же октаэдрит) и брукит.

СИНГОНИИ (КРИСТАЛЛОГРАФИЧЕСКИЕ СИСТЕМЫ) . Все формы кристаллов образуют 7 сингонии (кубическую, тетрагональную, гексагональную, тригональную, ромбическую, моноклинную, триклинную). Диагностическими признаками сингонии являются кристаллографические оси и углы, образуемые этими осями.

В триклинной сингонии присутствует минимальное число элементов симметрии. За ней в порядке усложнения следуют моноклинная, ромбическая, тетрагональная, тригональная, гексагональная и кубическая сингонии.

Кубическая сингония . Все три оси имеют равную длину и расположены перпендикулярно друг другу. Типичные формы кристаллов: куб, октаэдр, ромбододекаэдр, пентагондодекаэдр, тетрагон-триоктаэдр, гексаоктаэдр.

Тетрагональная сингония . Три оси расположены перпендикулярно друг другу, две оси имеют одинаковую длину, третья (главная ось) либо короче, либо длиннее. Типичные формы кристаллов - призмы, пирамиды, тетрагоны, трапецоэдры и бипирамиды.

Гексагональная сингония . Третья и четвертая оси расположены наклонно к плоскости, имеют равную длину и пересекаются под углом 120 o . Четвертая ось, отличающаяся от остальных по размеру, расположена перпендикулярно к другим. И оси и углы по расположению аналогичны предыдущей сингонии, но элементы симметрии весьма разнообразны. Типичные формы кристаллов - трехгранные призмы, пирамиды, ромбоэдры и скаленоэдры.

Ромбическая сингония . Характерны три оси, перпендикулярные друг другу. Типичные кристаллические формы - базальные пинакоиды, ромбические призмы, ромбические пирамиды и бипирамиды.

Моноклинная сингония . Три оси разной длины, вторая перпендикулярна другим, третья находится под острым углом к первой. Типичные формы кристаллов - пинакоиды, призмы с кососрезанными гранями.

Триклинная сингония . Все три оси имеют разную длину и пересекаются под острыми углами. Типичные формы - моноэдры и пинакоиды.

Форма и рост кристаллов . Кристаллы, принадлежащие к одному минеральному виду, имеют схожий внешний вид. Кристалл поэтому можно охарактеризовать как сочетание внешних параметров (граней, углов, осей). Но относительный размер этих параметров довольно разный. Следовательно, кристалл может менять свой облик (чтобы не сказать внешность) в зависимости от степени развития тех или иных форм. Например, пирамидальный облик, где все грани сходятся, столбчатый (в совершенной призме), таблитчатый, листоватый или глобулярный.

Два кристалла, имеющих то же сочетание внешних параметров, могут иметь разный вид. Сочетание это зависит от химического состава среды кристаллизации и других условий формирования, к которым относятся температура, давление, скорость кристаллизации вещества и т. д. В природе изредка встречаются правильные кристаллы, которые формировались в благоприятных условиях - это, например, гипс в глинистой среде или минералы на стенках жеоды. Грани таких кристаллов хорошо развиты. Наоборот, кристаллы, образовавшиеся в изменчивых или неблагоприятных условиях, часто бывают деформированы.

АГРЕГАТЫ . Часто встречаются кристаллы, которым не хватало пространства для роста. Эти кристаллы срастались с другими, образуя неправильные массы и агрегаты. В свободном пространстве среди горных пород кристаллы развивались совместно, образуя друзы, а в пустотах - жеоды. По своему строению такие агрегаты весьма разнообразны. В мелких трещинах известняков встречаются образования, напоминающие окаменевший папоротник. Их называют дендритами, сформировавшимися в результате образования оксидов и гидрооксидов марганца и железа под воздействием растворов, циркулировавших в этих трещинах. Следовательно, дендриты никогда не образуются одновременно с органическими остатками.

Двойники . При формировании кристаллов часто образуются двойники, когда два кристалла одного минерального вида срастаются друг с другом по определенным правилам. Двойники часто представляют собой индивидов, сросшихся под углом. Нередко проявляется псевдосимметрия - несколько кристаллов, относящихся к низшему классу симметрии, срастаются, образуя индивиды с псевдосимметрией более высокого порядка. Так, арагонит, относящийся к ромбической сингонии, часто образует двойниковые призмы с гексагональной псевдосимметрией. На поверхности таких срастаний наблюдается тонкая штриховка, образованная линиями двойникования.

ПОВЕРХНОСТЬ КРИСТАЛЛОВ . Как уже сказано, плоские поверхности редко бывают гладкими. Довольно часто на них наблюдается штриховка, полосчатость или бороздчатость. Эти характерные признаки помогают при определении многих минералов - пирита, кварца, гипса, турмалина.

ПСЕВДОМОРФОЗЫ . Псевдоморфозы - это кристаллы, имеющие форму другого кристалла. Например, встречается лимонит в форме кристаллов пирита. Псевдоморфозы образуются при полном химическом замещении одного минерала другим с сохранением формы предыдущего.


Формы агрегатов кристаллов могут быть очень разнообразны. На фото - лучистый агрегат натролита.
Образец гипса со сдвойникованными кристаллами в виде креста.

Физические и химические свойства. Не только внешняя форма и симметрия кристалла определяются законами кристаллографии и расположением атомов - это относится и к физическим свойствам минерала, которые могут быть разными в различных направлениях. Например, слюда может разделяться на параллельные пластинки только в одном направлении, поэтому ее кристаллы анизотропны. Аморфные вещества одинаковы по всем направлениям, и поэтому изотропны. Такие качества также важны для диагностики этих минералов.

Плотность. Плотность (удельный вес) минералов представляет собой отношение их веса к весу такого же объема воды. Определение удельного веса является важным средством диагностики. Преобладают минералы с плотностью 2-4. Упрощенная оценка веса поможет при практической диагностике: легкие минералы имеют вес от 1 до 2, минералы средней плотности - от 2 до 4, тяжелые минералы от 4 до 6, очень тяжелые - более 6.

МЕХАНИЧЕСКИЕ СВОЙСТВА . К ним относятся твердость, спайность, поверхность скола, вязкость. Эти свойства зависят от кристаллической структуры и используются с целью выбора методики диагностирования.

ТВЕРДОСТЬ . Довольно легко поцарапать кристалл кальцита кончиком ножа, но сделать это с кристаллом кварца вряд ли получится - лезвие скользнет по камню, не оставив царапины. Значит, твердость у этих двух минералов различная.

Твердостью по отношению к царапанью называют сопротивление кристалла попытке внешней деформации поверхности, другими словами, сопротивление механической деформации извне. Фридрих Моос (1773-1839) предложил относительную шкалу твердости из степеней, где каждый минерал имеет твердость к процарапыванию выше, чем предыдущий: 1. Тальк. 2. Гипс. 3. Кальцит. 4. Флюорит. 5. Апатит. 6. Полевой шпат. 7. Кварц. 8. Топаз. 9. Корунд. 10. Алмаз. Все эти значения применимы только к свежим, не подвергшимся выветриванию образцам.

Можно оценить твердость упрощенным способом. Минералы с твердостью 1 легко царапаются ногтем; при этом они жирные на ощупь. Поверхность минералов с твердостью 2 также царапается ногтем. Медная проволока или кусочек меди царапает минералы с твердостью 3. Кончик перочинного ножа царапает минералы до твердости 5; хороший новый напильник - кварц. Минералы с твердостью более 6 царапают стекло (твердость 5). От 6 до 8 не берет даже хороший напильник; при таких попытках летят искры. Чтобы определить твердость, испытывают образцы с возрастающей твердостью, пока они поддаются; затем берут образец, который, очевидно, еще тверже. Противоположным образом надо действовать, если необходимо определить твердость минерала, окруженного породой, твердость которой ниже, чем у минерала, нужного для образца.


Тальк и алмаз, два минерала, занимающие крайние позиции в шкале твердости Мооса.

Легко сделать вывод на основании того, скользит ли минерал по поверхности другого или царапает ее с легким скрипом. Могут наблюдаться следующие случаи:
1. Твердость одинакова, если образец и минерал взаимно не царапают друг друга.
2. Возможно, что оба минерала друг друга царапают, поскольку верхушки и выступы кристалла могут быть тверже, чем грани или плоскости спайности. Поэтому можно поцарапать грань кристалла гипса или плоскость его спайности вершиной другого кристалла гипса.
3. Минерал царапает первый образец, а на нем делает царапину образец более высокого класса твердости. Его твердость находится посредине между используемыми для сравнения образцами, и ее можно оценить в полкласса.

Несмотря на очевидную простоту такого определения твердости, многие факторы могут привести к ложному результату. Например, возьмем минерал, свойства которого сильно разнятся по разным направлениям, как у дистена (кианита): по вертикали твердость 4-4,5, и кончик ножа оставляет четкий след, но в перпендикулярном направлении твердость 6-7 и ножом минерал вообще не царапается. Происхождение названия этого минерала связано с этой особенностью и подчеркивает ее весьма выразительно. Поэтому необходимо проводить испытание твердости по разным направлениям.

Некоторые агрегаты имеют более высокую твердость, чем те компоненты (кристаллы или зерна), из которых они состоят; может оказаться, что плотный обломок гипса трудно поцарапать ногтем. Наоборот, некоторые пористые агрегаты менее твердые, что объясняется наличием пустот между гранулами. Поэтому мел царапается ногтем, хотя состоит из кристаллов кальцита с твердостью 3. Другой источник ошибок - минералы, испытавшие какие-то изменения. Оценить твердость порошкообразных, выветрелых образцов или агрегатов чешуйчатого и игольчатого строения простыми средствами невозможно. В таких случаях лучше использовать другие методы.

Спайность . Ударом молотка или нажатием ножа кристаллы по плоскостям спайности кристалл иногда можно разделить на пластинки. Спайность проявляется по плоскостям с минимальным сцеплением. Многие минералы обладают спайностью по нескольким направлениям: галит и галенит - параллельно граням куба; флюорит - по граням октаэдра, кальцит - ромбоэдра. Кристалл слюды-мусковита; хорошо видны плоскости спайности (на фото справа).

Такие минералы, как слюда и гипс, имеют совершенную спайность в одном направлении, а в других направлениях спайность несовершенная или вообще отсутствует. При тщательном наблюдении можно заметить внутри прозрачных кристаллов тончайшие плоскости спайности по хорошо выраженным кристаллографическим направлениям.

Поверхность излома . Многие минералы, например кварц и опал, не имеют спайности ни в одном направлении. Их основная масса раскалывается на неправильные куски. Поверхность скола можно описать как плоскую, неровную, раковистую, полураковистую, шероховатую. Металлы и крепкие минералы имеют шероховатую поверхность скола. Это свойство может служить диагностическим признаком.

Другие механические свойства . Некоторые минералы (пирит, кварц, опал) раскалываются на куски под ударом молотка - они являются хрупкими. Другие, наоборот, превращаются в порошок, не давая обломков.

Ковкие минералы можно расплющить, как, например, чистые самородные металлы. Они не образуют ни порошка, ни обломков. Тонкие пластинки слюды можно согнуть, как фанеру. После прекращения воздействия они вернутся в исходное состояние - это свойство эластичности. Другие, как гипс и пирит, можно согнуть, но они сохранят деформированное состояние - это свойство гибкости. Такие признаки позволяют распознавать сходные минералы - например, отличить эластичную слюду от гибкого хлорита.

Окраска . Некоторые минералы имеют настолько чистый и красивый цвет, что их используют как краски или лаки. Часто их названия применяют в обиходной речи: изумрудно-зеленый, рубиново-красный, бирюзовый, аметистовый и др. Окраска минералов, один из основных диагностических признаков, не является ни постоянной, ни вечной.

Есть ряд минералов, у которых окраска постоянная - малахит всегда зеленый, графит - черный, самородная сера - желтая. Такие распространенные минералы, как кварц (горный хрусталь), кальцит, галит (поваренная соль), бесцветны, когда в них нет примесей. Однако наличие последних вызывает окраску, и мы знаем голубую соль, желтый, розовый, фиолетовый и коричневый кварц. Флюорит обладает целой гаммой окрасок.

Присутствие элементов-примесей в химической формуле минерала приводит к весьма специфической окраске. На этой фотографии изображен зеленый кварц (празем), в чистом виде совершенно бесцветный и прозрачный.

Турмалин, апатит и берилл имеют различные цвета. Окраска не является несомненным диагностическим признаком минералов, обладающих различными оттенками. Цвет минерала зависит также от наличия элементов-примесей, входящих в кристаллическую решетку, а также различных пигментов, загрязнений, включений в кристалле-хозяине. Иногда он может быть связан с радиоактивным облучением. У некоторых минералов цвет меняется в зависимости от освещения. Так, александрит при дневном свете зеленый, а при искусственном освещении - фиолетовый.

У некоторых минералов изменяется интенсивность окраски при повороте граней кристалла относительно света. Цвет кристалла кордиерита при вращении меняется от голубого до желтого. Причина такого явления состоит в том, что подобные кристаллы, называемые плеохроичными, по-разному поглощают свет в зависимости от направления луча.

Цвет некоторых минералов может изменяться также при наличии пленки, имеющей другую окраску. Эти минералы в результате окисления покрываются налетом, который, возможно, как-то смягчает действие солнечного или искусственного света. Некоторые драгоценные камни теряют свою окраску, если в течение какого-то периода подвергаются солнечному освещению: изумруд теряет свой глубокий зеленый цвет, аметист и розовый кварц бледнеют.

Многие минералы, содержащие серебро (например, пираргирит и прустит), также чувствительны к солнечным лучам (инсоляции). Апатит под воздействием инсоляции покрывается черной вуалью. Коллекционерам следует предохранять такие минералы от воздействия света. Красный цвет реальгара на солнце переходит в золотисто-желтый. Подобные изменения окраски совершаются в природе очень медленно, но можно искусственно очень быстро изменить цвет минерала, ускорив процессы, происходящие в природе. Например, можно при нагревании получить желтый цитрин из фиолетового аметиста; алмазы, рубины и сапфиры искусственно "улучшают" с помощью радиоактивного облучения и ультрафиолетовых лучей. Горный хрусталь благодаря сильному облучению превращается в дымчатый кварц. Агат, если его серый цвет выглядит не слишком привлекательно, можно перекрасить, опустив в кипящий раствор обыкновенного анилинового красителя для тканей.

ЦВЕТ ПОРОШКА (ЧЕРТА) . Цвет черты определяется при трении о шероховатую поверхность неглазированного фарфора. При этом нужно не забывать, что фарфор имеет твердость 6-6,5 по шкале Мооса, и минералы с большей твердостью оставят только белый порошок растертого фарфора. Всегда можно получить порошок в ступке. Окрашенные минералы всегда дают более светлую черту, неокрашенные и белые - белую. Обычно белая или серая черта наблюдается у минералов, окрашенных искусственно, или с загрязнениями и пигментом. Часто она как бы затуманена, так как в разбавленной окраске ее интенсивность обуславливается концентрацией красящего вещества. Цвет черты минералов с металлическим блеском отличается от их собственного цвета. Желтый пирит дает зеленовато-черную черту; черный гематит - вишнево-красную, черный вольфрамит - коричневую, а касситерит - почти неокрашенную черту. Цветная черта позволяет быстрее и легче определить по ней минерал, чем черта разбавленного цвета или бесцветная.

БЛЕСК . Как и цвет, это эффективный метод определения минерала. Блеск зависит оттого, как свет отражается и преломляется на поверхности кристалла. Различают минералы с металлическим и неметаллическим блеском. Если их различить не удается, можно говорить о полуметаллическом блеске. Непрозрачные минералы металлов (пирит, галенит) обладают большой отражательной способностью и имеют металлический блеск. Для другой важной группы минералов (цинковая обманка, касситерит, рутил и др.) определить блеск затруднительно. Для минералов с неметаллическим блеском различают следующие категории в соответствии с интенсивностью и свойствами блеска:

1. Алмазный блеск, как у алмаза.
2. Стеклянный блеск.
3. Жирный блеск.
4. Тусклый блеск (у минералов с плохой отражательной способностью).

Блеск может быть связан со строением агрегата и направлением господствующей спайности. Минералы, имеющие тонкослоистое сложение, имеют перламутровый блеск.

ПРОЗРАЧНОСТЬ . Прозрачность минерала - качество, которое отличается большой изменчивостью: непрозрачный минерал можно легко отнести к прозрачным. Основная часть бесцветных кристаллов (горный хрусталь, галит, топаз) относятся к этой группе. Прозрачность зависит от строения минерала - некоторые агрегаты и мелкие зерна гипса и слюды кажутся непрозрачными или просвечивающими, в то время как кристаллы этих минералов прозрачны. Но если рассматривать с лупой маленькие гранулы и агрегаты, можно видеть, что они прозрачны.

ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ . Показатель преломления представляет собой важную оптическую константу минерала. Она измеряется с помощью специальной аппаратуры. Когда луч света проникает внутрь анизотропного кристалла, происходит преломление луча. Такое двойное лучепреломление создает впечатление, что существует виртуальный второй объект параллельно изучаемому кристаллу. Подобное явление можно наблюдать через прозрачный кристалл кальцита.

ЛЮМИНЕСЦЕНЦИЯ . Некоторые минералы, такие как шеелит и виллемит, облучаемые ультрафиолетовыми лучами, светятся специфическим светом, что в ряде случаев может некоторое время продолжаться. Флюорит при нагревании в темном месте светится - это явление называется термолюминесценция. При трении некоторых минералов возникает другой тип свечения - триболюминесценция. Эти разные типы люминесценции являются характеристикой, позволяющей легко диагностировать ряд минералов.

ТЕПЛОПРОВОДНОСТЬ . Если взять в руку кусок янтаря и кусок меди, покажется, что один из них теплее другого. Это впечатление обусловлено различной теплопроводностью данных минералов. Так можно различить стеклянные имитации драгоценных камней; для этого нужно приложить камушек к щеке, где кожа более чувствительна к теплу.

Следующие свойства можно определить по тому, какие ощущения они вызывают у человека. На ощупь графит и тальк кажутся гладкими, а гипс и каолин - сухими и шероховатыми. Растворимые в воде минералы, такие как галит, сильвинит, эпсомит, имеют специфический вкус - соленый, горький, кислый. Некоторые минералы (сера, арсенопирит и флюорит) обладают легко распознаваемым запахом, который возникает сразу при ударе по образцу.

МАГНЕТИЗМ . Фрагменты или порошок некоторых минералов, в основном имеющих повышенное содержание железа, можно отличить от других сходных минералов с помощью магнита. Магнетит и пирротин сильно магнитны и притягивают железные опилки. Некоторые минералы, например гематит, приобретают магнитные свойства, если их раскалить докрасна.

ХИМИЧЕСКИЕ СВОЙСТВА . Определение минералов на основе их химических свойств требует, помимо специального оборудования, обширных знаний в области аналитической химии.

Есть один простой метод для определения карбонатов, доступный непрофессионалам - действие слабого раствора соляной кислоты (вместо нее можно брать обыкновенный столовый уксус - разбавленную уксусную кислоту, которая есть на кухне). Таким способом можно легко отличить бесцветный образец кальцита от белого гипса - нужно капнуть на образец кислоты. Гипс на это не реагирует, а кальцит "вскипает" при выделении углекислого газа.

Лицей современных технологий управления

Реферат по физике

Кристаллы и их свойства

Выполнил:

Проверил:

Введение

Кристаллические тела являются одой из разновидностей минералов.

Кристаллическими называют твердые тела, физические свойства которых не одинаковы в различных направлениях, но совпадают в параллельных направлениях.

Семейство кристаллических тел состоит из двух групп - монокристаллов и поликристаллов. Первые иногда обладают геометрически правильной внешней формой, а вторые, подобно аморфным телам, не имеют присущей данному веществу определенной формы. Но в отличие от аморфных тел структура поликристаллов неоднородна, зерниста. Они представляют собой совокупность сросшихся друг с другом хаотически ориентированных маленьких кристаллов - кристаллитов. Поликристаллическую структуру чугуна, например, можно обнаружить, если рассмотреть с помощью лупы образец на изломе.

По размерам кристаллы бывают различными. Многие из них можно увидеть только в микроскоп. Но встречаются гигантские кристаллы массой в несколько тонн.

Строение кристаллов

Разнообразие кристаллов по форме очень велико. Кристаллы могут иметь от четырех до нескольких сотен граней. Но при этом они обладают замечательным свойством - какими бы ни были размеры, форма и число граней одного и того же кристалла, все плоские грани пересекаются друг с другом под определенными углами. Углы между соответственными гранями всегда одинаковы. Кристаллы каменной соли, например, могут иметь форму куба, параллелепипеда, призмы или тела более сложной формы, но всегда их грани пересекаются под прямыми углами. Грани кварца имеют форму неправильных шестиугольников, но углы между гранями всегда одни и те же - 120°.

Закон постоянства углов, открытый в 1669 г. датчанином Николаем Стено, является важнейшим законом науки о кристаллах - кристаллографии.

Измерение углов между гранями кристаллов имеет очень большое практическое значение, так как по результатам этих измерений во многих случаях может быть достоверно определена природа минерала. Простейшим прибором для измерения углов кристаллов является прикладной гониометр. Применение прикладного гониометра возможно только для исследования крупных кристаллов, невелика и точность измерений, выполненных с его помощью. Различить, например, кристаллы кальцита и селитры, сход­ные по форме и имеющие углы между соответственными гранями, равные 101° 55" первого и 102°41,5" у второго, с помощью прикладного гониометра очень трудно. Поэтому в лабораторных условиях измерений углов между гранями кристалла обычно выполняют с помощью более сложных и точных приборов.

Кристаллы правильной геометрической формы встречаются в природе редко. Совместное действие таких неблагоприятных факторов, как колебания температуры, тесное окружение соседними твердыми телами, не позволяют растущему кристаллу приобрести характерную для него форму. Кроме того, значительная часть кристаллов, имевших в далеком прошлом совершенную огранку, успела утратить ее под действием воды, ветра, трения о другие твердые тела. Так, многие округлые прозрачные зерна, которые можно найти в прибрежном песке, являются кристаллами кварца, лишившимися граней в результате длительного трения друг о друга.

Существует несколько способов, позволяющих узнать, является ли твердое тело кристаллом. Самый простой из них, но очень малопригодный для использования, был открыт в результате случайного наблюдения в конце XVIII в. Французский ученый Ренне Гаюи нечаянно уронил один из кристаллов своей коллекции. Рассмотрев осколки кристалла, он заметил, что многие из них представляют собой уменьшенные копии исходного образца.

Замечательное свойство многих кристаллов давать при дроблении осколки, подобные по форме исходному кристаллу, позволило Гаюи высказать гипотезу, что все кристаллы состоят из плотно уложенных рядами маленьких, невидимых в микроскоп, частиц, имеющих присущую данному веществу правильную геометрическую форму. Многообразие геометрических форм Гаюи объяснил не только различной формой «кирпичиков», из которых они состоят, но и различными способами их укладки.

Гипотеза Гаюи правильно отразила сущность явления - упорядоченное и плотное расположение структурных элементов кристаллов, но она не ответила на целый ряд важнейших вопросов. Существует ли предел сохранению формы? Если существует, то что представляет собой самый маленький «кирпичик»? Имеют ли атомы и молекулы вещества форму многогранников?

Еще в XVIII в. английский ученый Роберт Гук и голландский ученый Христиан Гюйгенс обратили внимание на возможность построения правильных многогранников из плотно укладываемых шаров. Они предположили, что кристаллы построены из шарообразных частиц - атомов или молекул. Внешние формы кристаллов согласно этой гипотезе являются следствием особенностей плотной упаковки атомов или молекул. Независимо от них к такому же выводу пришел в 1748 г. великий русский ученый М. В. Ломоносов.

При плотнейшей укладке шаров в один плоский слой каждый шар оказывается окруженным шестью другими шарами, центры которых образуют правильный шестиугольник. Если укладку второго слоя вести по лункам между шарами первого слоя, то второй слой окажется таким же, как и первый, только смещенным относительно него в пространстве.

Укладка третьего слоя шаров может быть осуществлена двумя способами (рис.1). В первом способе шары третьего слоя укладываются в лунки, находящиеся точно над шарами первого слоя, и третий слой оказывается точной копией первого. При последующем повторении укладки слоев этим способом получается структура, называемая гексагональной плотноупакованной структурой. Во втором способе шары третьего слоя укладываются в лунки, не находящиеся точно над шарами первого слоя. При этом способе упаковки получается структура, называемая кубической плотноупакованной структурой. Обе упаковки дают степень заполнения объема 74%. Никакой другой способ расположения шаров в пространстве при отсутствии их деформации большей степени заполнения объема не дает.

При укладке шаров ряд за рядом способом гексагональной плотной упаковки можно получить правильную шестигранную призму, второй способ упаковки ведет к возможности построения куба из шаров.

Если при построении кристаллов из атомов или молекул действует принцип плотной упаковки, то, казалось бы, в природе должны встречаться кристаллы только в виде шестигранных призм и кубов. Кристаллы такой формы действительно очень распространены. Гексагональный плотной упаковке атомов соответствует, например, форма кристаллов цинка, магния, кадмия. Кубической плотной упаковке соответствует форма кристаллов меди, алюминия, серебра, золота и ряда других металлов.

Но этими двумя формами многообразие мира кристаллов вовсе не ограничивается.

Существование форм кристаллов, не соответствующих принципу плотнейшей упаковки равновеликих шаров, может иметь разные причины.

Во-первых, кристалл может быть построен с соблюдением принципа плотной упаковки, но из атомов разных размеров или из молекул, имеющих форму, сильно отличающуюся от шарообразной (рис.2). Атомы кислорода и водорода имеют шарообразную форму. При соединении одного атома кислорода и двух атомов водорода происходит взаимное проникновение их электронных оболочек. Поэтому молекула воды имеет форму, значительно отличающуюся от шарообразной. При затвердевании воды плотная упаковка ее молекул не может осуществляться тем же способом, что и упаковка равновеликих шаров.

Во - вторых, отличие упаковки атомов или молекул от плотнейшей может быть объяснено существованием более сильных связей между ними по определенным направлениям. В случае атомных кристаллов направленность связей определяется структурой внешних электронных оболочек атомов, в молекулярных кристаллах - строением молекул.

Разобраться в устройстве кристаллов, пользуясь только объемными моделями их строения, довольно трудно. В связи с этим часто применяется способ изображения строения кристаллов с помощью пространственной кристаллической решетки. Она представляет собой пространственную сетку, узлы которой совпадают с положением центров атомов (молекул) в кристалле. Такие модели просматриваются насквозь, но по ним нельзя ничего узнать о форме и размерах частиц, слагающих кристаллы.

В основе кристаллической решетки лежит элементарная ячейка - фигура наименьшего размера, последовательным переносом которой можно построить весь кристалл. Для однозначной характеристики ячейки нужно задать размеры ее ребер а, в и с и величину углов a, b и g между ними. Длину одного из ребер называют постоянной кристаллической решетки, а всю совокупность шести величин, задающих ячейку, - параметрами ячейки.

На рисунке 3 показано, как можно застроить все пространство путем сложения элементарных ячеек.

Важно обратить внимание на то, что большинство атомов, а для многих типов кристаллической решетки и каждый атом принадлежит не одной элементарной ячейке, а входит одновременно в состав нескольких соседних элементарных ячеек. Рассмотрим, к примеру, элементарную ячейку кристалла каменной соли.

За элементарную ячейку кристалла каменной соли, из которой, переносом в пространстве можно построить весь кристалл, должна быть принята часть кристалла, представленная на рисунке. При этом нужно учесть, что от ионов, находящихся в вершинах ячейки, ей принадлежит лишь одна восьмая каждого из них; от ионов, лежащих на ребрах ячейки, ей принадлежит по одной четвертой каждого; от ионов, лежащих на гранях, на долю каждой из двух соседних элементарных ячеек приходится по половине иона.

Подсчитаем число ионов натрия и число ионов хлора, входящих в состав одной элементарной ячейки каменной соли. Ячейке целиком принадлежит один ион хлора, расположенный в центре ячейки, и по одной четверти каждого из 12 ионов, расположенных на ребрах ячейки. Всего ионов хлора в одной ячейке 1+12*1/4=4. Ионов натрия в элементарной ячейке-шесть половинок на гра­нях и восемь восьмушек в вершинах, всего 6*1/2+8*1/8=4.

: а (100), о (111), d 110)

1.Дипирамиды, т.е. формы, имеющие характер двух пирамид, сложенных своими основаниями. Такие дипирамиды отличаются количеством граней и называются так же, как простые пирамиды. Например, дигексагональная дипирамида есть простая форма, сложенная 24 гранями, причем эти грани образуют две двенадцатигранные пирамиды, сложенные своими основаниями (табл. 2, 14).

2. Скаленоэдры и трапецоэдры - простые формы, сходные с дипирамидами, но с боковыми ребрами, не лежащими в одной плоскости (табл. 2, 32, 33 и 28-30).

3.Ромбоэдр - простая форма, сложенная из шести ромбов и представляющая собой перекошенный куб (табл. 2, 31).

4.Тетраэдр - простая форма, сложенная четырьмя треугольными непараллельными гранями.

При этом форма треугольной грани может быть разносторонней (ромбический тетраэдр), равнобедренной (тетрагональный тетраэдр) и равносторонней (кубический или, в узком смысле слова, - тетраэдр) (табл. 2, 25-27).

Для простых форм кубической характерно полное замыкание пространства (закрытые формы). Из них чаще всего встречаются

1.Куб - форма, состоящая из шести квадратных граней - символ (100) (табл. 2, 34).

2. Октаэдр - форма, состоящая. из восьми равносторонних треугольных граней - символ (111) (табл. 2, 35).

3.Ромбододекаэдр - форма, состоящая из двенадцати ромбических граней- символ (110) (табл. 2, 39).

4.Тетраэдр - форма, состоящая из четырех равносторонне треугольных граней - символ (111) или (111) (табл. 2, Щ..

5.Пентагондодекаэдр - форма, состоящая из двенадцати пятиугольных граней. Символ (210) или вообще (hko) (табл.2,40).

В зависимости от условий кристаллизации каждое кристаллизующееся вещество может принять вид или простой формы или комбинации, если, кроме граней одной простой фигуры, появляются одновременно грани другой или нескольких других простых форм.

При учете того, из каких простых форм состоит данная комбинация, следует иметь в виду, что, входя в состав комбинации, грани каждой простой формы уже не имеют того типа, какой они имеют, образуя только эту простую форму. При определении названия каждой простой формы, входящей в коли и нацию, следует мысленно продолжить все грани этой формы до взаимного пересечения. Только тогда можно себе представить, какова эта определенная простая форма.

На рис. 12 изображены: а - комбинация куба и октаэдра, б - комбинация октаэдра и куба, причем октаэдр является основной формой и, наконец, в - комбинация октаэдра, куба и ромбододекаэдра.

Огранение кристалла является следствием определенной симметрии его внутреннего строения. Отсюда следует, что на кристалле могут появляться лишь такие грани, которые отвечают данному классу или виду симметрии.

Из сказанного видно, какую огромную роль играет знание кристаллографической формы минерала для его диагностики.

Кроме того, весьма существенным является тот факт, что на преимущественное развитие граней той или иной простой формы влияют и внешние условия образования кристалла: температура, концентрация в растворе или расплаве других компонентов, кислая или щелочная реакция кристаллизующейся среды, быстрота охлаждения и т. п. Отсюда следует, что вид или облик того или иного минерала (его габитус) может служить иногда хорошим критерием условий образования определенного месторождения. , позволяющие делать такие заключения, называются типоморфными.

Так, например, (СаСО 3), кристаллизующийся в классе L 3 3L 2 3РС тригональной , может иметь совершенно различный облик в зависимости от условий образования: он может давать и сильно сплющенные ромбоэдры (табл. 2, 31) и ромбоэдры более вытянутые по оси и, наконец, сильно вытянутые скаленоэдры (табл. 2, 33).

Изучение влияния среды на облик кристаллов является одной из интереснейших и важнейших задач генетической минералогии, позволяющей вскрывать особенности того или иного месторождения, нередко имеющего большое практическое значение.

Вторым примером могут быть кристаллы флюорита (СаF 2). При высоких температурах они образуются в виде октаэдров (табл. 2,), а при кристаллизации в низкотемпературных условиях в виде кубов (табл. 2, ).

Рис. 13. Кристаллы гипса.

В природных условиях постоянно наблюдается срастание кристаллов. Так, очень часто встречаются друзы («щетки») горного хрусталя или аметиста - группы кристаллов на общем основании (рис. 28). В друзах кристаллы срастаются в случайном положении в зависимости от условий образования. Но, кроме случайных срастаний, наблюдаются закономерные срастания кристаллов, которые получили название двойников.

Причиной, заставляющей кристаллическое тело с самого момента своего зарождения принять форму двойников, могут бы или условия кристаллизации, или изменения давления и температуры.

Различают два основных типа двойников: двойники срастания, примером которых могут служить весьма часто встречающиеся двойники гипса (рис. 13).

Рис. 14. Двойник прорастания плавикового шпата (флюорита)

Нередко наблюдаются двойники другого типа, так называемые двойники прорастания. Примером может служить двойник прорастания плавикового шпата (рис. 14), в котором два куба как бы проросли друг друга в двойниковом положении, причем двойниковой плоскостью (плоскостью срастания) служит плоскость октаэдра.

Наружная симметрия двойниковых сростков всегда отличается от симметрии отдельных индивидуумов, слагающих тот или иной сросток, так как двойниковое срастание вызывает появление таких элементов симметрии, какими отдельные индивидуумы не обладали.

ОПТИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ

Как упомянуто выше, в кристаллических (анизотропных) веществах, в отличие от аморфных (изотропных), физические, а следовательно, и оптические свойства неодинаковы по разным направлениям.

К числу оптических свойств кристаллов, вытекающих из их анизотропности, относится и двойное преломление, ко торое впервые обнаружил на кристаллах прозрачного кальцита (исландского шпата) датский ученый Эразм Бартолин еще в 1670 г.

Явление это заключается в следующем. Если взять прозрачный ромбоэдр исландского шпата и положить его на бумагу с какой-либо надписью, сквозь кристалл будут видны две надписи одна над другой (рис. 15), причем буквы одной надписи видны слабее, чем другой. Явление это тем эффектнее, чем толще кристалл.

Рис. 15. Двойное лучепреломление в кристалле исландского шпата

Это замечательное свойство, столь отчетливо выраженное на исландском шпате, в действительности характерно для большинства прозрачных кристаллов (кроме кристаллов кубической ), но выражено обычно гораздо слабее. Если положить кристалл исландского шпата на бумагу, на которой находится черная точка, сделанная карандашом или чернилами, сквозь кристалл будут видны две точки. Если теперь вращать кристалл на бумаге вокругупомянутой точки, более отчетливая точка останется неподвижной, а другая, по мере вращения кристалла, будет описывать окружность вокруг первой. Каждый луч света, проходящий в этом опыте через кристалл исландского шпата в наш глаз, разделяется на два луча, которые называют: лучом обыкновенным (неподвижная точка в нашем опыте) и лучом необыкновенным (точка, которая движется вместе с кристаллом приего вращении).

Итак, всякий луч, вошедший в оптически анизотропный кристалл, распадается на два луча, идущих с разными скоростями и поляризованных во взаимно перпендикулярных плоскостях.

Эти явления объясняются тем, что световые колебания, совершающиеся в оптически анизотропной среде в двух взаимно перпендикулярных направлениях, встречают в кристалле различное сопротивление своему продвижению. Следствием этого оба луча пройдут через кристалл с различной скоростью, а следовательно, будут иметь и различные показатели преломления, которые, как

Рис. 16. Поляризационный микроскоп МП-2 завода „Русские самоцветы»

известно, обратно пропорциональны скоростям прохождения света через какую-либо среду. Это явление и получило название двойного светопреломления и свойственно в разной степени всем кристаллам, кроме принадлежащих к кубической сингонии и ведущих себя оптически, как тела изотропные.

Явлением двупреломления, а также и другими оптическими свойствами кристаллов широко пользуются в петрографии и минералогии для исследования минералогического состава пород и агрегатов.

Наиболее распространенным для этого исследования прибором является поляризационный микроскоп, представляющий одно из наиболее мощных орудий при исследовании пород и минералов (рис. 16). Исследование ведется или изучением мелких кри сталлических зерен или изучением тонкой (0,03 мм) пластинки породы, наклеенной на (шлиф). Непрозрачные и руды также изучаются при помощи специального микроскопа, позволяющего делать наблюдения, используя свет, отраженный от полированной поверхности образца (пришлифовки).

ОБРАЗОВАНИЕ КРИСТАЛЛОВ

Возникновение кристаллов связано с упорядочением расположения частиц в пространстве и образования ими кристаллической решетки.

Раз возникнув, кристалл не остается неизменным. Если он окружен средою, которая способна содержать то же вещество, то он будет увеличиваться в размерах — расти или, наоборот, растворятся. То или другое направление процесса будет зависеть от того, какой из этих противоположных процессов пойдет быстрее. Если частицы будут отрываться от кристалла в большем количестве, чем присоединяться к нему, кристалл будет растворяться. Если же частицы будут присоединяться к нему в большем количестве, чем отрываться от него - то кристалл будет расти. Некоторые кристаллы в природе достигают гигантских размеров. Так, на Волыни в 1945 г. был найден кристалл кварца весом 9 т. Его длина была около 2,7 м, а ширина около 1,5 м. Чаще всего кристаллы образуются из растворов холодных и горячих. Очень много кристаллов образуется при охлаждении расплавленных масс при высоких температурах. Реже кристаллы возникают из газов (иней, выделения нашатыря в вулканах). Широко распространено также образование кристаллов в твердых средах - «прекристаллизация».

Мал золотник, да дорог

(Об исследованиях Торричелли читайте

Замечательный французский мыслитель, писатель и ученый Блез Паскаль, современник Торричелли, понял, что на основе таких сообщающихся сосудов легко создать могучий «жидкий» подъемный кран или гидравлический пресс.

Для этого диаметр у одной из сообщающихся трубок необходимо сделать намного меньше, чем у другой. Тогда с помощью сравнительно небольшого давления, приложенного к малой трубке, можно передвинуть тяжелую массу жидкости в другом сосуде!

Принцип, предложенный Паскалем, лежит в основе самых современных гидравлических машин и аппаратов, позволяющих получать очень большие давления, необходимые, в частности, для «насильственного» соединения водорода с металлами.

Так, еще не зная атомной и молекулярной структуры тел, ученые прошлого обнаруживали удивительные особенности поведения веществ, которые удалось объяснить только в XX веке…

Чтобы проверить механические свойства материала для сложных конструкций, его растягивают в раскаленном состоянии.

В твердом теле атомы почти не меняются местами, если, конечно, не нагревать его. Нагрев сильно увеличивает быстроту и размах движений атомов около положений равновесия. При высокой температуре твердое тело можно расплавить или даже испарить.

Особую группу твердых тел составляют кристаллы, где атомы распределены в строгом геометрическом порядке. Существует много возможностей расположить атомы в правильные ряды, шеренги и составить из них разнообразные геометрические фигуры, хотя, как доказал еще в прошлом веке русский ученый Е, С. Федоров, наиболее устойчивых конструкций кристаллической решетки ровно 230. Все последующие проверки теории Федорова показали, что в природе не существует других, не предсказанных Федоровым стабильных кристаллических структур.

Строгая периодичность внутреннего строения кристаллов оказалась очень полезной для современной техники.

Свободный электрон, возникший в кристалле под воздействием на него температуры или света, может пройти гораздо большие расстояния, чем в обычном твердом теле, что очень важно при создании приборов для радиотехники.

Разнообразны кристаллы, существующие в природе! Снег, лежащий ранней зимой между кустами и деревьями, тоже состоит из крохотных кристалликов.

Свет проникает в кристалл глубже, чем в твердое тело того же химического состава, но состоящее из множества случайных, хаотично расположенных по отношению друг к другу атомных групп. И это свойство широко используется в оптике - лучшие линзы и призмы делаются, конечно, из кристаллов.

Обнаружены кристаллы, в которых после приложения давления на разных гранях возникают электрические заряды противоположного знака. И наоборот - после пропускания электрического тока эти кристаллы могут сильно сжиматься или расширяться.

Такие удивительные кристаллы, получившие название пьезо-кристаллов , сейчас широко применяются в электронной технике - ведь даже давление звуковой волны вызывает в них появление и ток электрических зарядов, который может быть легко обнаружен и передан по проводам…

Свойства кристаллов

Глубокое изучение свойств столь полезных кристаллов показало, что в них возможно достаточно свободное движение атомов. Более того - в кристаллах были найдены различные несовершенства, нарушения в правильном строении кристаллической решетки, пустоты, сдвиги атомов. Пользуясь этими нарушениями структуры, инородные примеси, посторонние металлические или газовые включения могут довольно глубоко проникнуть в кристалл, особенно когда его получают из расплава или раствора исходного вещества.

Именно поэтому прочность реальных кристаллов чаще всего в десятки, а то и в сотни раз меньше прочности, которой они должны были бы обладать по теоретическим расчетам.

Кристаллы-усы, увеличенные в 150 раз.Сплетенные с волокнами графита, стекла и полимеров кристаллические усы позволили получить новые материалы,легкие и очень прочные.

Около двадцати лет назад в нескольких лабораториях мира внимательные исследователи обнаружили под микроскопом, что на поверхности многих кристаллов самопроизвольно вырастают небольшие «усики». Но по атомным масштабам – это небоскребы, где высота в десятки и сотни раз превышает ширину основания.

Образование крохотных усиков (или, как их теперь называют, нитевидных кристаллов ) происходит за счет малозаметных передвижений атомов по поверхности кристалла. Ведь атомы поверхности опутаны электронными связями только с одной стороны - из глубины кристалла, и это дает им иногда возможность оторваться от соседей и двигаться. Такие блуждающие атомы начинают пристраиваться к случайному выступу на поверхности и окружают его. Рост выступа вверх происходит, как правило, по спирали. Образуется башня-конус, напоминающая устремленный в небо памятник III Интернационалу, символ братства народов, проект которого выполнил в двадцатых годах нашего столетия выдающийся художник и конструктор Владимир Татлин, Недавно проект этого памятника можно было видеть в залах Музея изобразительных искусств им. Пушкина в Москве.

Интересен механизм роста кристаллов-усиков , но самым необычным оказалось… полное отсутствие в них каких-либо дефектов. Прочность крохотных кристаллов в сотни раз превышала прочность массивных кристаллов, на поверхности которых они выросли, и полностью соответствовала теоретической.

Помню, когда в начале шестидесятых годов в одном из журналов появился мой обзор работ по нитевидным кристаллам-усикам, к нам в лабораторию стали приходить многочисленные посетители. Одних интересовали уникальные свойства новых материалов, других беспокоила возможность «незапланированного» роста кристаллов в радиотехнических схемах, где такие усики могли привести к внезапному выходу из строя электронных приборов.

Большую радость открытие нитевидных кристаллов вызвало у всех, кому необходимы прочные и легкие конструкционные материалы. Нитевидные кристаллы стали вплетать в полимерные волокна, соединять с металлами, чтобы получить канаты, ленты и трубы невиданной прочности и долговечности.