Почему генетический код универсален. Генетический код как способ записи наследственной информации

Лекция 5. Генетический код

Определение понятия

Генетический код - это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в ДНК.

Поскольку ДНК непосредственного участия в синтезе белка не принимает, то код записывается на языке РНК. В РНК вместо тимина входит урацил.

Свойства генетического кода

1. Триплетность

Каждая аминокислота кодируется последовательностью из 3-х нуклеотидов.

Определение: триплет или кодон - последовательность из трех нуклеотидов, кодирующая одну аминокислоту.

Код не может быть моноплетным, поскольку 4 (число разных нуклеотидов в ДНК) меньше 20. Код не может быть дуплетным, т.к. 16 (число сочетаний и перестановок из 4-х нуклеотидов по 2) меньше 20. Код может быть триплетным, т.к. 64 (число сочетаний и перестановок из 4-х по 3) больше 20.

2. Вырожденность.

Все аминокислоты, за исключением метионина и триптофана, кодируются более чем одним триплетом:

2 АК по 1 триплету = 2.

9 АК по 2 триплета = 18.

1 АК 3 триплета = 3.

5 АК по 4 триплета = 20.

3 АК по 6 триплетов = 18.

Всего 61 триплет кодирует 20 аминокислот.

3. Наличие межгенных знаков препинания.

Определение:

Ген - это участок ДНК, кодирующий одну полипептидную цепь или одну молекулу tPHK , r РНК или sPHK .

Гены tPHK , rPHK , sPHK белки не кодируют.

В конце каждого гена, кодирующего полипептид, находится, по меньшей мере, один из 3-х триплетов, кодирующих терминирующие кодоны РНК, или стоп-сигналы. В мРНК они имеют следующий вид: UAA , UAG , UGA . Они терминируют (оканчивают) трансляцию.

Условно к знакам препинания относится и кодон AUG - первый после лидерной последовательности. (См. лекцию 8) Он выполняет функцию заглавной буквы. В этой позиции он кодирует формилметионин (у прокариот).

4. Однозначность.

Каждый триплет кодирует лишь одну аминокислоту или является терминатором трансляции.

Исключение составляет кодон AUG . У прокариот в первой позиции (заглавная буква) он кодирует формилметионин, а в любой другой - метионин.

5. Компактность, или отсутствие внутригенных знаков препинания.
Внутри гена каждый нуклеотид входит в состав значащего кодона.

В 1961 г. Сеймур Бензер и Френсис Крик экспериментально доказали триплетность кода и его компактность.

Суть эксперимента: "+" мутация - вставка одного нуклеотида. "-" мутация - выпадение одного нуклеотида. Одиночная "+" или "-" мутация в начале гена портит весь ген. Двойная "+" или "-" мутация тоже портит весь ген.

Тройная "+" или "-" мутация в начале гена портит лишь его часть. Четверная "+" или "-" мутация опять портит весь ген.

Эксперимент доказывает, что код тршплетен и внутри гена нет знаков препинания. Эксперимент был проведен на двух рядом расположенных фаговых генах и показал, кроме того, наличие знаков препинания между генами.

6. Универсальность.

Генетический код един для всех живущих на Земле существ.

В 1979 г. Беррел открыл идеальный код митохондрий человека.

Определение:

«Идеальным» называется генетический код, в котором выполняется правило вырожденности квазидублетного кода: Если в двух триплетах совпадают первые два нуклеотида, а третьи нуклеотиды относятся к одному классу (оба - пурины или оба - пиримидины), то эти триплеты кодируют одну и ту же аминокислоту.

Из этого правила в универсальном коде есть два исключения. Оба отклонения от идеального кода в универсальном касаются принципиальных моментов: начала и конца синтеза белка:

Кодон

Универсальный

код

Митохондриальные коды

Позвоночные

Беспозвоночные

Дрожжи

Растения

STOP

STOP

С UA

А G А

STOP

STOP

230 замен не меняют класс кодируемой аминокислоты. к рываемость.

В 1956 г. Георгий Гамов предложил вариант перекрываемого кода. Согласно Гамовскому коду, каждый нуклеотид, начиная с третьего в гене, входит в состав 3-х кодонов. Когда генетический код был расшифрован, оказалось, что он неперекрываем, т.е. каждый нуклеотид входит в состав лишь одного кодона.

Достоинства перекрываемого генетического кода: компактность, меньшая зависимость структуры белка от вставки или делеции нуклеотида.

Недостаток: большая зависимость структуры белка от замены нуклеотида и ограничение на соседей.

В 1976 г. была секвенирована ДНК фага φХ174. У него одноцепочечная кольцевая ДНК, состоящая из 5375 нуклеотидов. Было известно, что фаг кодирует 9 белков. Для 6 из них были определены гены, располагающиеся друг за другом.

Выяснилось, что есть перекрывание. Ген Е полностью находится внутри гена D . Его инициирующий кодон появляется в результате сдвига считывания на один нуклеотид. Ген J начинается там, где кончается ген D . Инициирующий кодон гена J перекрывается с терминирующим кодоном гена D в результате сдвига на два нуклеотида. Конструкция называется "сдвиг рамки считывания" на число нуклеотидов, некратное трем. На сегодняшний день перекрывание показано только для нескольких фагов.

Информационная емкость ДНК

На Земле живет 6 миллиардов человек. Наследственная информация о них
заключена в 6x10 9 сперматозоидах. По разным оценкам у человека от 30 до 50
тысяч генов. У всех людей ~ 30x10 13 генов или 30x10 16 пар нуклеотидов, которые составляют 10 17 кодонов. Средняя книжная страница содержит 25x10 2 знаков. ДНК 6x10 9 сперматозоидов содержит информацию, равную по объему примерно

4x10 13 книжных страниц. Эти страницы заняли бы объем 6-и зданий НГУ. 6x10 9 сперматозоидов занимают половину наперстка. Их ДНК занимает менее четверти наперстка.

ГЕНЕТИЧЕСКИЙ КОД, система записи наследственной информации в виде последовательности оснований нуклеотидов в молекулах ДНК (у некоторых вирусов - РНК), определяющая первичную структуру (расположение аминокислотных остатков) в молекулах белков (полипептидов). Проблема генетического кода была сформулирована после доказательства генетической роли ДНК (американские микробиологи О. Эйвери, К. Мак-Леод, М. Маккарти, 1944) и расшифровки её структуры (Дж. Уотсон, Ф. Крик, 1953), после установления того, что гены определяют структуру и функции ферментов (принцип «один ген - один фермент» Дж. Бидла и Э. Тейтема, 1941) и что существует зависимость пространственной структуры и активности белка от его первичной структуры (Ф. Сенгер, 1955). Вопрос о том, как комбинации из 4 оснований нуклеиновых кислот определяют чередование 20 обычных аминокислотных остатков в полипептидах, впервые поставил Г. Гамов в 1954 году.

На основании эксперимента, в котором исследовали взаимодействия вставок и выпадений пары нуклеотидов, в одном из генов бактериофага Т4 Ф. Крик и другие учёные в 1961 году определили общие свойства генетического кода: триплетность, т. е. каждому аминокислотному остатку в полипептидной цепи соответствует набор из трёх оснований (триплет, или кодон) в ДНК гена; считывание кодонов в пределах гена идёт с фиксированной точки, в одном направлении и «без запятых», то есть кодоны не отделены какими-либо знаками друг от друга; вырожденность, или избыточность, - один и тот же аминокислотный остаток могут кодировать несколько кодонов (кодоны-синонимы). Авторы предположили, что кодоны не перекрываются (каждое основание принадлежит только одному кодону). Прямое изучение кодирующей способности триплетов было продолжено с использованием бесклеточной системы синтеза белка под контролем синтетической матричной РНК (мРНК). К 1965 году генетический код был полностью расшифрован в работах С. Очоа, М. Ниренберга и Х. Г. Кораны. Раскрытие тайны генетического кода явилось одним из выдающихся достижений биологии в 20 веке.

Реализация генетического кода в клетке происходит в ходе двух матричных процессов - транскрипции и трансляции. Посредником между геном и белком является мРНК, образующаяся в процессе транскрипции на одной из нитей ДНК. При этом последовательность оснований ДНК, несущая информацию о первичной структуре белка, «переписывается» в виде последовательности оснований мРНК. Затем в ходе трансляции на рибосомах последовательность нуклеотидов мРНК считывается транспортными РНК (тРНК). Последние имеют акцепторный конец, к которому присоединяется аминокислотный остаток, и адаптерный конец, или антикодон-триплет, который узнаёт соответствующий кодон мРНК. Взаимодействие кодона и анти-кодона происходит на основании комплементарного спаривания оснований: Аденин (А) - Урацил (U), Гуанин (G) - Цитозин (С); при этом последовательность оснований мРНК переводится в аминокислотную последовательность синтезирующегося белка. Различные организмы используют для одной и той же аминокислоты разные кодоны-синонимы с разной частотой. Считывание мРНК, кодирующей полипептидную цепь, начинается (инициируется) с кодона AUG, соответствующего аминокислоте метионину. Реже у прокариот инициирующими кодонами служат GUG (валин), UUG (лейцин), AUU (изолейцин), у эукариот - UUG (лейцин), AUA (изолейцин), ACG (треонин), CUG (лейцин). Это задаёт так называемую рамку, или фазу, считывания при трансляции, то есть далее всю нуклеотидную последовательность мРНК считывают триплет за триплетом тРНК до тех пор, пока на мРНК не встретится любой из трёх кодонов-терминаторов, часто называемых стоп-кодонами: UAA, UAG, UGA (таблица). Считывание этих триплетов приводит к завершению синтеза полипептидной цепи.

Кодоны AUG и стоп-кодоны стоят соответственно в начале и в конце участков мРНК, кодирующих полипептиды.

Генетический кода квазиуниверсален. Это значит, что существуют небольшие вариации в значении некоторых кодонов у разных объектов, и это касается, прежде всего, кодонов-терминаторов, которые могут быть значащими; например, в митохондриях некоторых эукариот и у микоплазм UGA кодирует триптофан. Кроме того, в некоторых мРНК бактерий и эукариот UGA кодирует необычную аминокислоту - селеноцистеин, а UAG у одной из архебактерий - пирролизин.

Существует точка зрения, согласно которой генетический кода возник случайно (гипотеза «замороженного случая»). Более вероятно, что он эволюционировал. В пользу такого предположения говорит существование более простого и, по-видимому, более древнего варианта кода, который считывается в митохондриях согласно правилу «два из трёх», когда аминокислоту определяют только два из трёх оснований в триплете.

Лит.: Crick F. Н. а. о. General nature of the genetic code for proteins // Nature. 1961. Vol. 192; The genetic code. N. Y., 1966; Ичас М. Биологический код. М., 1971; Инге-Вечтомов С. Г. Как читается генетический код: правила и исключения // Современное естествознание. М., 2000. Т. 8; Ратнер В. А. Генетический код как система // Соросовский образовательный журнал. 2000. Т. 6. № 3.

С. Г. Инге-Вечтомов.

ГЕНЕТИЧЕСКИЙ КОД , способ записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности образующих эти кислоты нуклеотидов. Определённой последовательности нуклеотидов в ДНК и РНК соответствует определённая последовательность аминокислот в полипептидных цепях белков. Код принято записывать с помощью заглавных букв русского или латинского алфавита. Каждый нуклеотид обозначается буквой, с которой начинается название входящего в состав его молекулы азотистого основания: А (А) – аденин, Г (G) – гуанин, Ц (С) – цитозин, Т (Т) – тимин; в РНК вместо тимина урацил – У (U). Каждую кодирует комбинация из трёх нуклеотидов – триплет, или кодон. Кратко путь переноса генетической информации обобщён в т. н. центральной догме молекулярной биологии: ДНК ` РНК f белок.

В особых случаях информация может переноситься от РНК к ДНК, но никогда не переносится от белка к генам.

Реализация генетической информации осуществляется в два этапа. В клеточном ядре на ДНК синтезируется информационная, или матричная, РНК (транскрипция). При этом нуклеотидная последовательность ДНК «переписывается» (перекодируется) в нуклеотидную последовательность мРНК. Затем мРНК переходит в цитоплазму, прикрепляется к рибосоме, и на ней, как на матрице, синтезируется полипептидная цепь белка (трансляция). Аминокислоты с помощью транспортной РНК присоединяются к строящейся цепи в последовательности, определяемой порядком нуклеотидов в мРНК.

Из четырёх «букв» можно составить 64 различных трёхбуквенных «слова» (кодона). Из 64 кодонов 61 кодирует определённые аминокислоты, а три отвечают за окончание синтеза полипептидной цепи. Так как на 20 аминокислот, входящих в состав белков, приходится 61 кодон, некоторые аминокислоты кодируются более чем одним кодоном (т. н. вырождённость кода). Такая избыточность повышает надёжность кода и всего механизма биосинтеза белка. Другое свойство кода – его специфичность (однозначность): один кодон кодирует только одну аминокислоту.

Кроме того, код не перекрывается – информация считывается в одном направлении последовательно, триплет за триплетом. Наиболее удивительное свойство кода – его универсальность: он одинаков у всех живых существ – от бактерий до человека (исключение составляет генетический код митохондрий). Учёные видят в этом подтверждение концепции о происхождении всех организмов от одного общего предка.

Расшифровка генетического кода, т. е. определение «смысла» каждого кодона и тех правил, по которым считывается информация, осуществлена в 1961–1965 гг. и считается одним из наиболее ярких достижений молекулярной биологии.

Генетический код – система записи генетической информации в ДНК (РНК) в виде определенной последовательности нуклеотидов.Определённой последовательности нуклеотидов в ДНК и РНК соответствует определённая последовательность аминокислот в полипептидных цепях белков. Код принято записывать с помощью заглавных букв русского или латинского алфавита. Каждый нуклеотид обозначается буквой, с которой начинается название входящего в состав его молекулы азотистого основания: А (А) – аденин, Г (G) – гуанин, Ц (С) – цитозин, Т (Т) – тимин; в РНК вместо тиминаурацил – У (U). Последовательность нуклеотидов определяет последовательность включения АК в синтезируемый белок.

Свойства генетического кода:

1. Триплетность - значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон) .
2. Непрерывность - между триплетами нет знаков препинания, то есть информация считывается непрерывно.
3. Неперекрываемость - один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки) .
4. Однозначность (специфичность) - определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotescrassus кодирует две аминокислоты - цистеин и селеноцистеин)
5. Вырожденность (избыточность) - одной и той же аминокислоте может соответствовать несколько кодонов.
6. Универсальность - генетический код работает одинаково в организмах разного уровня сложности - от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже) .

Условия биосинтеза

Для биосинтеза белка необходима генетическая информация молекулы ДНК; информационная РНК - переносчик этой информации из ядра к месту синтеза; рибосомы - органоиды, где происходит собственно синтез белка; набор аминокислот в цитоплазме; транспортные РНК, кодирующие аминокислоты и переносящие их к месту синтеза на рибосомы; АТФ - вещество, обеспечивающее энергией процесс кодирования и биосинтеза.

Этапы

Транскрипция - процесс биосинтеза всех видов РНК на матрице ДНК, который протекает в ядре.

Определенный участок молекулы ДНК деспирализуется, водородные связи между двумя цепочками разрушаются под действием ферментов. На одной цепи ДНК, как на матрице, по принципу комплементарное из нуклеотидов синтезируется РНК-копия. В зависимости от участка ДНК таким образом синтезируются рибосомные, транспортные, информационные РНК.

После синтеза иРНК она выходит из ядра и направляется в цитоплазму к месту синтеза белка на рибосомы.


Трансляция - процесс синтеза полипептидных цепей, осуществляемый на рибосомах, где иРНК является посредником в передаче информации о первичной структуре белка.

Биосинтез белка состоит из ряда реакций.

1. Активирование и кодирование аминокислот. тРНК имеет вид клеверного листа, в центральной петле которого располагается триплет-ный антикодон, соответствующий коду определенной аминокислоты и кодону на иРНК. Каждая аминокислота соединяется с соответствующей тРНК за счет энергии АТФ. Образуется комплекс тРНК-аминокислота, который поступает на рибосомы.

2. Образование комплекса иРНК-рибосома. иРНК в цитоплазме соединяется рибосомами на гранулярной ЭПС.

3. Сборка полипептидной цепи. тРНК с аминокислотами по принципу комплементарности антикодона с кодоном соединяются с иРНК и входят в рибосому. В пептидном центре рибосомы между двумя аминокислотами образуется пептидная связь, а освободившаяся тРНК покидает рибосому. При этом иРНК каждый раз продвигается на один триплет, внося новую тРНК - аминокислоту и вынося из рибосомы освободившуюся тРНК. Весь процесс обеспечивается энергией АТФ. Одна иРНК может соединяться с несколькими рибосомами, образуя полисому, где идет одновременно синтез многих молекул одного белка. Синтез заканчивается, когда на иРНК начинаются бессмысленные кодоны (стоп-коды). Рибосомы отделяются от иРНК, с них снимаются полипептидные цепи. Так как весь процесс синтеза протекает на гранулярной эндо-плазматической сети, то образовавшиеся полипептидные цепи поступают в канальца ЭПС, где приобретают окончательную структуру и превращаются в молекулы белка.

Все реакции синтеза катализируются специальными ферментами с затратой энергии АТФ. Скорость синтеза очень велика и зависит от длины полипептида. Например, в рибосоме кишечной палочки белок из 300 аминокислот синтезируется приблизительно за 15-20 с.

Генетические функции ДНК заключаются в том, что она обеспечивает хранение, передачу и реализацию наследственной информации, которая представляет собой информацию о первичной структуре белков (т.е. их аминокислотном составе). Связь ДНК с синтезом белка была предсказана биохимиками Дж. Бидлом и Э. Тейтумом еще в 1944 г. при изучении механизма мутаций у плесневого грибка Neurospora. Информация записана в виде определенной последовательности азотистых оснований в молекуле ДНК с помощью генетического кода. Расшифровку генетического кода считают одним из великих открытий естествознания ХХ в. и по значимости приравнивают к открытию ядерной энергии в физике. Успех в этой области связан с именем американского ученого М. Ниренберга, в лаборатории которого был расшифрован первый кодон — YYY. Однако весь процесс расшифровки занял более 10 лет, в нем участвовало много известных ученых из разных стран, и не только биологи, но и физики, математики, кибернетики. Решающий вклад в разработку механизма записи генетической информации был внесен Г. Гамовым, который первым предположил, что кодон состоит из трех нуклеотидов. Совместными усилиями ученых была дана полная характеристика генетического кода.

Буквы во внутреннем круге — основания в 1-й позиции в кодоне, буквы во втором круге —
основания во 2-й позиции и буквы снаружи второго круга — основания в 3-й позиции.
В последнем круге — сокращенные названия аминокислот. НП — неполярные,
П — полярные аминокислотные остатки.

Основными свойствами генетического кода являются: триплетность , вырожденность и неперекрываемость . Триплетность означает, что последовательность из трех оснований определяет включение в молекулу белка специфической аминокислоты (например, АУГ — метионин). Вырожденность кода заключается в том, что одна и та же аминокислота может кодироваться двумя или несколькими кодонами. Неперекрываемость означает, что одно и то же основание не может входить в состав двух соседних кодонов.

Установлено, что код является универсальным , т.е. принцип записи генетической информации одинаков у всех организмов.

Триплеты, кодирующие одну и ту же аминокислоту, называются кодонами-синонимами. Обычно они имеют одинаковые основания в 1-й и 2-й позициях и различаются только по третьему основанию. Например, включение аминокислоты аланина в молекулу белка кодируют кодоны-синонимы в молекуле РНК — GCA, GCC, GCG, GCY. В составе генетического кода имеются три некодирующих триплета (нонсенс-кодоны — UAG, UGA, UAA), которые играют роль stop-сигналов в процессе считывания информации.

Установлено, что универсальность генетического кода не является абсолютной. При сохранении общего для всех организмов принципа кодирования и особенностей кода в ряде случаев наблюдается изменение смысловой нагрузки отдельных кодовых слов. Это явление получило название неоднозначности генетического кода, а сам код был назван квазиуниверсальным .

Читайте также другие статьи темы 6 "Молекулярные основы наследственности" :

Перейти к чтению других тем книги "Генетика и селекция. Теория. Задания. Ответы" .