Необратимые процессы. Энтропия. Второй закон термодинамики

Закономерность переноса тепла от одного объекта к другому рассматривается в утверждении о теплообмене. Весь процесс заключается во внутреннем обмене энергии между объектами, которая называется теплотой.

Правильный процесс направлен только на получение равного состояния, будь оно термическое, механическое или какое-либо ещё. Это действие и содержится во втором законе термодинамики, который имеет совсем немаленькое значение для тепловых машин. Данный закон говорит о том, что тепло может само передвигаться исключительно от объекта с большой температурой к объекту наименьшей температурой. Что бы осуществить обратный цикл, будет затрачиваться некоторая работа. Из чего можно получить заключение второго закона термодинамики: Это действие во время которого теплота сама по себе передвигается от объекта с меньшей теплотой к объекту с наибольшей теплотой не может существовать.

Заметка: Вы хотите обновить свои подоконники, но не знаете в какую компанию обратиться? Попробуйте подоконник меллер купить (http://hoffen.ru/podokonniki-moeller/), ценой и качеством Вы останетесь довольны!

В свое время второй закон термодинамики дает оценку условиям в которых тепло сможет, на сколько хочет обращаться в работу. Любое разомкнутое термодинамическое действие во время нарастания объема, будет происходить работа со знаком плюс.

Формула второго закона термодинамики

В которой L- будет итоговой работой, v1 и v2- собственной изначальный и итоговый объем удельный.
Так как действие расширения бесконечным быть не может, соответственно, и обращение тепла в работу будет этим ограничиваться. Непрерывным это действие будет в случае закрытого кругового движения.

Любое действие происходящее в цикле, происходит с подводом либо отводом тепла dQ, с сопровождением затраты либо совершения работ, упадком или возрастанием энергии внутри тела, а обязательное условие dQ=dU+dL , dg=du+d1 должно выполняться. Ведь оно доказывает что без тепла (dg=0) все действия будут происходить благодаря внутренней энергии системы, а ввод тепла в систему можно определить термодинамикой.

Интеграция в замкнутом контуре:

в которой Qц, Lц - будет теплотой превращенной в работу, L1- L2 - работой совершенной данным телом. Q1 подведенная теплота, Q2- отведенная теплота. А значит, Lц= Qц= Q1-Q2
Тепло можно подвести к телу Q1 только при наличии более горячего тела, а отвод Q2 только при наличии более холодного тела. В случае цикличности процесса понадобиться два источника с разной температурой.

Энтропия. Второй закон термодинамики

Самопроизвольные процессы. В природе физические и химические превращения совершаются в определенном направлении. Так, два тела, находящиеся при разных температурах, вступают в контакт, тепловая энергия передается от более теплого тела к более холодному до тех пор, пока температура этих двух тел не сравняется. При погружении цинковой пластинки в соляную кислоту образуется ZnCl 2 и H 2 . Все эти превращения являются самопроизвольными (спонтанными ). Самопроизвольный процесс не может протекать в обратном направлении так же самопроизвольно, как в прямом.

В химии важно знать критерии, позволяющие предвидеть, может ли химическая реакция происходить самопроизвольно, и если может, то уметь определить количества образовавшихся продуктов. Первый закон термодинамики такого критерия не дает. Тепловой эффект реакции не определяет направления процесса. Самопроизвольно могут протекать как экзотермические, так и эндотермические реакции. Так, например, самопроизвольно идет процесс растворения нитрата аммония NH 4 NO 3 (к) в воде, хотя тепловой эффект этого процесса положителен: > 0 (процесс эндотермический); тоже самое можно сказать и о растворении гипосульфита натрия в воде. А в другом примере невозможно осуществить при Т = 298 К и p = 101 кПа (1 атм) синтез н. гептана C 7 H 16 (ж) , несмотря на то, что стандартная теплота его образования отрицательна: < 0 (процесс экзотермический).

Таким образом, разность энтальпий реакции еще не определяет возможности ее протекания в данных конкретных условиях.

Второй закон термодинамики. Критерий самопроизвольного протекания процесса в изолированных системах дает второй закон термодинамики.

Второй закон термодинамики дает возможность разделить все допускаемые первым законом процессы на самопроизвольные и не самопроизвольные.

Второй закон термодинамики является постулатом, обоснованным большим опытом, накопленным человечеством. Он выражается разными эквивалентными формулировками:

1. Теплота не может переходить сама собой от менее нагретого тела к более нагретому - постулат Клаузиуса (1850 г). Утверждается, что процесс теплопроводности необратим.

2. Быстро или медленно всякая система стремится к состоянию истинного равновесия.

3. Невозможен периодический процесс, единственным результатом которого является превращение теплоты в работу - формулировка Кельвина - Планк.

4. Теплота может переходить в работу только при наличии разности температур и не целиком, а с определенным термическим коэффициентом полезного действия:

где η - термический коэффициент полезного действия; A – работа, полученная системой за счет перехода тепла от тела с высокой температурой (T 1 ) к телу с низкой температурой (T 2 ); Q 1 – теплота, взятая у тела нагретого с температурой T 1 ; Q 2 – теплота, отданная холодному телу с температурой T 2 . Т.е. любые процессы протекают под действием разности потенциалов, каковой для тепловых процессов является разность температур, для электрических разность потенциалов, для механических - разность высот и т.д. Общим является сравнительно низкий коэффициент полезного действия. Значение к. п. д. обращается в единицу, если T 2 → 0 , но абсолютный нуль недостижим (третье начало термодинамики), следовательно, всю энергию нагретого тела при T 1 в работу превратить нельзя. Т.е. при совершении работы часть общей энергии системы остается неиспользованной.

Понятие об энтропии. Исследуя выражение к.п.д. тепловой машины Клаузиус ввел новую термодинамическую функцию, которую назвал энтропией – S .

Работа идеальной тепловой машины (цикл Карно) подробно рассматривается в курсе физики.

Из математического выражения второго закона термодинамики следует:

или

В дифференциальной форме:

Суммируя изменения по всему циклу тепловой машины, получаем выражение где dQ – приращение тепла, T – соответствующая температура; - интеграл по замкнутому контуру.

Подинтегральное выражение Клаузиус принял за приращение новой функции S – энтропии:

или

Энтропия представляет собой функцию параметров состояния системы (p, V, T) и может оценить направление процесса в системе, стремящейся к равновесию, т.к. для равновесного процесса ее изменение равно нулю; или .

В случае необратимого превращения, т.е. спонтанного процесса, идущего при постоянной температуре, имеем

Если протекает процесс самопроизвольно, то изменение энтропии положительно:

Для изолированных систем процессы, для которых изменение энтропии < 0 , запрещены.

Если в качестве изолированной системы выбрать вселенную, то второе начало термодинамики можно сформулировать следующим образом:

Существует функция S, называемая энтропией, которая является такой функцией состояния, что

В случае обратимого процесса энтропия вселенной постоянна, а в случае необратимого процесса возрастает. Энтропия вселенной не может уменьшаться”.

Статистическая интерпретация энтропии. Для характеристики состояния некоторой массы вещества, являющейся совокупностью очень большого числа молекул можно указать параметры состояния системы и таким образом охарактеризовать макросостояние системы; но можно указать мгновенные координаты каждой молекулы (x i , y i , z i) и скорости перемещения по всем трем направлениям Vx i , Vy i , Vz i , т.е. охарактеризовать микросостояние системы. Каждому макросостоянию отвечает огромное число микросостояний. Число микросостояний, соответствующее макроскопическому состоянию определяется точными величинами параметров состояния и обозначается через W - термодинамическая вероятность состояния системы.

Термодинамическая вероятность состояния системы, состоящей всего из 10 молекул газа примерно 1000, а ведь только в 1 см 3 газа содержится 2,7 ∙ 10 19 молекул (н.у.). Поэтому в термодинамике используют не величину W , а ее логарифм lnW . Последнему можно придать размерность (Дж/К) , умножив на константу Больцмана К :

W , где =1, 38 · 10 -23 Дж/К,

где N A – число Авогадро

Величину S называют энтропией системы. Энтропия – термодинамическая функция состояния системы.

Если изолированная система находится в макроскопическом состоянии 1 , соответствующем W 1 микроскопических состояний и если она может перейти в макроскопическое состояние 2 , число микроскопических состояний которого W 2 , то система будет иметь тенденцию перейти в состояние 2 при условии, что W 2 > W 1

Система спонтанно стремится к состоянию, которому в микроскопическом масштабе соответствует наибольшее число возможностей реализации.

Например, при расширении идеального газа в пустоту конечное состояние (с большим объемом по сравнению с начальным состоянием) включает гораздо большее число микросостояний просто потому, что молекулы могут принимать большее число положений в пространстве.

Когда в изолированной системе происходит самопроизвольный процесс, число микроскопических состояний W возрастает; тоже самое можно сказать об энтропии системы. При возрастании числа микроскопических состояний W , связанных с макроскопическим состоянием системы, энтропия увеличивается.

Например, рассмотрим термодинамическое состояние 1 моль воды (18 г H 2 O ) при стандартных условиях. Пусть W (ж) - термодинамическая вероятность состояния этой системы. При понижении температуры до 0 ºС вода замерзает, превращается в лед; при этом молекулы воды как бы закрепляются в узлах кристаллической решетки и термодинамическая вероятность состояния системы уменьшается; W (к) < W (ж). Следовательно, падает и энтропия системы: (к) < (ж). Наоборот при повышении температуры до 100º С вода закипает и превращается в пар; при этом термодинамическая вероятность состояния системы увеличивается: W (г) > W (ж) , следовательно, растет и энтропия системы:

(г) > (ж).

Энтропия, таким образом, является мерой неупорядоченности состояния системы. Действительно, единственному микроскопическому состоянию (W = 1 ) будет соответствовать полная упорядоченность и нулевая энтропия, т.е. известны положение, скорость, энергия каждой частицы, и все эти микроскопические характеристики будут оставаться постоянными во времени.

Второй закон термодинамики можно сформулировать следующим образом:

Изолированная система стремится достигнуть наиболее вероятного состояния, т.е. макроскопического состояния, соответствующего наибольшему числу микроскопических состояний.

В изолированных системах самопроизвольно идут только те процессы, которые сопровождаются ростом энтропии системы: Δ S > 0 (Δ S = S 2 – S 1).

Энтропия чистых веществ, существующих в виде идеальных кристаллов при температуре абсолютного нуля равна нулю. Это значит, что при абсолютном нуле достигается полная упорядоченность.

В физике, так как она является точной наукой, большинство догм доказывается эмпирическим путем. Именно таким образом был выведен второй закон термодинамики, который сегодня изучается в каждой школе. Необратимость тепловых процессов - вот о чем он говорит. Стоит отметить, что на начальных этапах изучения такая трактовка куда более понятна.

Общие представления

Физическим принципом, который ограничивает направления различных процессов в термодинамических системах, является второй закон термодинамики. Определение данного термина было сформировано в 19 столетии, сначала Рудольфом Клаузисом, а затем Уильямом Томсоном (лордом Кельвином). В соответствии с двумя постулатами в мире не может существовать некий вечный двигатель второго рода. Нет и не будет такой установки, которая бы тепло, исходящее от всех вещей, живых существ и явлений, превращала в энергию для своей постоянной работы. Исходя из этого было выведено правило, что КПД не может равняться единице. Сравнить это можно с работой холодильника, где температура, допустим, будет равна абсолютному нулю. В таких условиях круговой обмен теплом исключен.

Формулировка Рудольфа Клаузиса

Первым озвучил второй закон термодинамики Р. Клаузис - немецкий физик-практик и математик. По его словам, круговой процесс, в котором результат достигается путем передачи теплоты от менее нагретого тела к более нагретому, невозможен. Иными словами, температура в полной или частичной мере может свободно переходить от более теплого тела к более охлажденному, но в обратном направлении этот процесс происходить не сможет. Это наглядным образом демонстрирует нам отсутствие цикличности, замкнутого круга. Такие понятия неприемлемы для термодинамики. Между телами просто происходит обмен теплом, и в результате этих действий не производится лишняя энергия.

Постулат, выведенный лордом Кельвином

Аналогичное определение второй закон термодинамики получил в трудах Томсона - британского физика и механика. Теоретически он звучит так: «Циклический процесс, единственным результатом которого могла бы быть работа, получаемая путем охлаждения теплого тела или резервуара, невозможен». Чтобы понять более ясно такую трактовку, представим себе некую машину (в соответствии с термодинамическим постулатом она существовать не может). Она периодически охлаждает резервуар с постоянно горячей водой, получая от этого тепловую энергию. За счет этой энергии машина поднимает различные грузы, как строительный кран. При этом в ней нет мотора, силовых установок и прочего механического наполнения. В точки зрения эмпирической физики такое невозможно.

Что общего?

Теперь рассмотрим, каким образом эти две трактовки объединяются и на что в принципе опирается второй закон термодинамики. Энтропия - та самая мера хаоса, которая увеличивается в процессе обмена теплом. Именно она является связующим элементом для описания Клаузиса и Кельвина. Но вернемся немного назад. Второе начало термодинамики гласит, что при обмене теплом энергия убывает (потому получение работы никак не возможно), но при этом мера хаоса увеличивается. Этот процесс необратимый, и часто его называют стихийным. В термодинамике энтропия постоянно приумножается, но ее уничтожение невозможно. Именно поэтому даже 100 процентов энергии, которые находятся в любом теле, не могут преобразоваться в работу.

Что такое мера хаоса?

Само понятие энтропии впервые было сформулировано устами Клаузиса. Оно применялось для определения меры необратимого процесса рассеивания энергии. Это была своего рода разница отклонения реального процесса от идеального. Энтропия в замкнутых системах, где любые процессы происходят циклично, имеет постоянную величину. Если же процесс необратимый (что непосредственно касается термодинамики), то энтропия всегда имеет положительное значение. Также стоит выделить, что мера хаоса порождается абсолютно всеми процессами, которые происходят во Вселенной. При постоянных показателях объема и энергии какого-либо тела или резервуара энтропия постоянно возрастает. Если данные показатели периодически меняются, то мера хаоса может уменьшиться за счет производимой работы, но ее полное уничтожение невозможно. При этом стоит отметить, что энтропия Вселенной не уменьшается. Она остается либо в норме, либо безвозвратно увеличивается.

Наглядный пример

Второй закон термодинамики можно объяснить на стандартном примере, который часто приводят школьникам. У нас есть два тела с различной температурой. Более нагретая субстанция будет отдавать свое тепло менее нагретой до тех пор, пока их температурные показатели не сравняются. В ходе данного процесса энтропия у первого, более теплого тела уменьшится на меньший показатель, нежели она увеличится у второго, более прохладного тела. В результате подобный самопроизвольный процесс создаст энтропию системы, показатель которой будет выше, чем суммарное значение энтропий двух тел в первоначальном положении. Иными словами, мера хаоса системы двух субстанций, полученная в результате обмена теплом, увеличилась.

Тепловая смерть Вселенной

Проводя свои расследования, Клаузис пришел к выводу, что каким бы открытым нам ни казалось пространство (наша планета, ее отдельные территории, акватории и т.д.), все это находится в космосе. Вселенная, в свою очередь, является огромнейшим замкнутым пространством, в рамках которого происходят макроскопические процессы. В силу того, что в замкнутой системе энтропия постоянно увеличивает свой показатель, наш мир близится к тому, что скоро в нем мера хаоса достигнет бесконечной величины. Это значит, что все процессы попросту прекратятся за счет того, что энергия исчерпает себя. Такая критическая точка, которой мы достигнем, возможно, в неком будущем, получила название тепловой смерти. Получается, что все наши действия (движения, ходьба, бег), все явления, которые происходят на планете (дуновение ветра, цунами, движения литосферных плит), - все это вызывает необратимое увеличение энтропии и исчерпывает энергию.

Опровержение теории

Судить обо всем космосе человек до сих пор не может. Мы видим лишь часть мира, в котором живем, и исследуем этот уголок, доказывая определенные законы и формируя на основе этого свои представления. Потому первое опровержение возможности тепловой смерти, которая основана на втором законе термодинамики, заключается в том, что Вселенная может и не быть замкнутой системой. Доподлинно известно, что 85 процентов космоса состоит из антиматерии, свойства которой никому неизвестны. Второе опровержение заключается в том, что наш космос, даже если и замкнут, является сплошной флуктуацией. Из-за различных колебаний и смен размеров, масс, показателей энергии и температуры энтропия не увеличивается (в суммарном, вселенском значении) и не уменьшается. Следовательно, мы и так пребываем в состоянии термодинамического равновесия, или же, словами Клаузиса, в состоянии тепловой смерти.

Подводим итоги

Второй закон термодинамики неразрывно связан с развитием точных наук. Он был открыт на заре научно-технического прогресса и стал, можно сказать, отправной точкой для дальнейших работ ученых в области математики, физики и астрономии. Стоит отметить, что все это мы представляем сугубо в земных условиях. Вполне вероятно, что в другой среде, где гравитационные поля имеют иную силу, термодинамика будет работать по совсем другой схеме.

Основные положения второго закона термодинамики

Первый закон термодинамики, являясь частным случаем все общего закона сохранения и превращения энергии, утверждает что теплота может превращаться в работу, а работа - в теплоту не устанавливая условий, при которых возможны эти превращения.

Он совершенно не рассматривает вопроса о направлении теп­лового процесса, а не зная этого направления, нельзя предска­зать его характер и результаты.

Например, первый закон не решает вопроса о том, будет ли совершаться переход теплоты от нагретого тела к холодному или обратно. Повседневные наблюдения и опыты показывают, что теплота сама собой может переходить только от нагретых тел к более холодным. Передача теплоты от нагретого тела к среде будет происходить до полного температурного равновесия с окружающей средой. Только за счет затраты работы можно изменить направление движения теплоты.

Это свойство теплоты резко отличает ее от работы.

Работа, как и все другие виды энергии, участвующие в каком-либо процессе, легко и полностью превращается в теплоту. Пол­ная превращаемость работы в теплоту была известна человеку в глубокой древности, когда он добывал огонь трением двух кусков дерева. Процессы превращения работы в теплоту происходят в природе непрерывно: трение, удар, торможение и т. д.

Совершенно иначе ведет себя теплота, например, в тепловых машинах. Превращение теплоты в работу происходит только при наличии разности температур между источником теплоты и теплоприемником. При этом вся теплота не может быть превращена в работу.

Из сказанного следует, что между преобразованием теплоты в работу и обратно существует глубокое различие. Закон, позво­ляющий указать направление теплового потока и устанавливаю­щий максимально возможный предел превращения теплоты в ра­боту в тепловых машинах, представляет собой новый закон, полу­ченный из опыта. Это и есть второй закон термодинамики, имею­щий общее значение для всех тепловых процессов. Второй закон термодинамики не ограничивается рамками техники; он приме­няется в физике, химии, биологии, астрономии и др.

В 1824 г. Сади Карно, французский инженер и ученый, в своих рассуждениях о движущей силе огня изложил сущность второго закона.

В 50-х годах прошлого столетия Клаузиусом была дана наи­более общая и современная формулировка второго закона термодинамики в виде следующего постулата: «Теплота не может пере­ходить от холодного тела к более нагретому сама собой даровым процессом (без компенсации) ». Постулат Клаузиуса должен рас­сматриваться как закон экспериментальный, полученный из наблю­дений над окружающей природой. Заключение Клаузиуса было сделано применительно к области техники, но оказалось, что вто­рой закон в отношении физических и химических явлений также правилен. Постулат Клаузиуса, как и все другие формулировки второго закона, выражает собой один из основных, но не абсолют­ных законов природы, так как он был сформулирован примени­тельно к объектам, имеющим конечные размеры в окружающих нас земных условиях.

Одновременно с Клаузиусом в 1851 г. Томсоном была выска­зана другая формулировка второго, закона термодинамики, из ко­торой следует, что не вся теплота, полученная от теплоотдатчика, может перейти в работу, а только некоторая ее часть.

Часть теп­лоты должна перейти в теплоприемник.

Следовательно, для получения работы необходимо иметь источ­ник теплоты с высокой температурой, или теплоотдатчик , и источник теплоты с низкой температурой, или теплоприемник . Кроме того, постулат Томсона показывает, что построить вечный дви­гатель, который бы создавал работу за счет использования только одной внутренней энергии морей, океанов, воздуха, не представ­ляется возможным. Это положение можно сформулировать как второй закон термодинамики: «Осуществление вечного двигателя второго рода невозможно» . Под вечным двигателем второго, рода подразумевается такой двигатель, который спосо­бен целиком превращать в работу всю теплоту, полученную толь­ко от одного источника.

Кроме изложенных имеется еще несколько формулировок вто­рого закона термодинамики, которые, по существу, не вносят чего-либо нового и поэтому не приводятся.

Энтропия.

Второй Закон Термодинамики, как и Первый (Закон сохранения энергии) установлен эмпирическим путем. Впервые его сформулировал Клаузиус: "теплота сама собой переходит лишь от тела с большей температурой к телу с меньшей температурой и не может самопроизвольно переходить в обратном направлении".

Другая формулировка: все самопроизвольные процессы в природе идут с увеличением энтропии . (Энтропия - мера хаотичности, неупорядоченности системы). Рассмотрим систему из двух контактирующих тел с разными температурами. Тепло пойдет от тела с большей температурой к телу с меньшей, до тех пор, пока температуры обоих тел не выровняются. При этом от одного тела к другому будет передано определенное количество тепла dQ. Но энтропия при этом у первого тела уменьшится на меньшую величину, чем она увеличится у второго тела, которое принимает теплоту , так как, по определению, dS=dQ/T (температура в знаменателе!). То есть, в результате этого самопроизвольного процесса энтропия системы из двух тел станет больше суммы энтропий этих тел до начала процесса. Иначе говоря, самопроизвольный процесс передачи тепла от тела с высокой температурой к телу с более низкой температурой привел к тому, что энтропия системы из этих двух тел увеличилась!

Важнейшие свойства энтропии замкнутых систем:

а) Энтропия замкнутой системы, совершающей обратимый цикл Карно, не изменяется:

ΔS обр =0, S=const.

б) Энтропия замкнутой системы, совершающей необратимый цикл Карно, возрастает:

ΔS необр >0.

в) Энтропия замкнутой системы при любых, происходящих в ней процессах, не убывает: ΔS≥0.

При элементарном изменении состояния замкнутой системы энтропия не убывает: dS≥0. Знак равенства относится к обратимым процессам, а знак неравенства к необратимым. Пункт в) является одной из формулировок второго закона (начала) термодинамики. Для произвольного процесса, происходящего в термодинамической системе, справедливо соотношение:

где Т - температура того тела, которое сообщает. Термодинамической системе энергию δQ в процессе бесконечно малого изменения состояния системы. Используя для δQ первое начало термодинамики, предыдущее неравенство можно переписать в форме, объединяющей первое и второе начало термодинамики: TdS ≥ dU+δA.

Свойства энтропии.

1. Итак, энтропия - функция состояния. Если процесс проводят вдоль адиабат, то энтропия системы не меняется. Значит адиабаты -это одновременно и изоэнтропы. Каждой более "высоко" расположенной адиабате (изоэнтропе) отвечает большее значение энтропии. В этом легко убедиться, проведя изотермический процесс между точками 1 и 2, лежащими на разных адиабатах (*см. рис.). В этом процессе Т=const, поэтому S2-S1=Q/T. Для идеального газа Q равно работе А, совершаемой системой. А так как А>0, значит S 2 >S 1 . Таким образом, зная, как выглядит система адиабат. Можно легко ответить на вопрос о приращении энтропии при проведении любого процесса между интересующими нас равновесными состояниями 1 и 2. Энтропия- величина аддитивная: энтропия макросистемы равна сумме энтропий ее отдельных частей.

3. Одно из важнейших свойств энтропии заключается в том, что энтропия замкнутой (т.е. теплоизолированной) макросистемы не уменьшается - она либо возрастает, либо остается постоянной. Если же система не замкнута, то ее энтропия может, как увеличиваться, так и уменьшаться.

Принцип возрастания энтропии замкнутых систем представляет собой еще одну формулировку второго начала термодинамики. Величина возрастания энтропии в замкнутой макросистеме может служить мерой необратимости процессов, протекающих в системе. В предельном случае, когда процессы имеют обратимый характер, энтропия замкнутой макросистемы не меняется.

Физический смысл имеет разность ΔS энтропии в двух состояниях системы. Чтобы определить изменение энтропии в случае необратимого перехода системы из одного состояния в другое, нужно придумать какой-нибудь обратимый процесс, связывающий начальное и конечное состояния, и найти приведенное тепло, полученное системой при таком переходе.

Рис. 3.12.4 - Необратимый процесс расширения газа «в пустоту» в отсутствие теплообмена

Только начальное и конечное состояния газа в этом процессе являются равновесными, и их можно изобразить на диаграмме (p, V). Точки (a) и (b), соответствующие этим состояниям, лежат на одной изотерме. Для вычисления изменения ΔS энтропии можно рассмотреть обратимый изотермический переход из (a) в (b). Поскольку при изотермическом расширении газ получает некоторое количество теплоты от окружающих тел Q > 0, можно сделать вывод, что при необратимом расширении газа энтропия возросла: ΔS > 0.

Другой пример необратимого процесса – теплообмен при конечной разности температур. На рис. 3.12.5 изображены два тела, заключенные в адиабатическую оболочку. Начальные температуры тел T 1 и T 2 < T 1 . При теплообмене температуры тел постепенно выравниваются. Более теплое тело отдает некоторое количество теплоты, а более холодное – получает. Приведенное тепло, получаемое холодным телом, превосходит по модулю приведенное тепло, отдаваемое горячим телом. Отсюда следует, что изменение энтропии замкнутой системы в необратимом процессе теплообмена ΔS > 0.

Рост энтропии является общим свойством всех самопроизвольно протекающих необратимых процессов в изолированных термодинамических системах. При обратимых процессах в изолированных системах энтропия не изменяется: ΔS≥0. Это соотношение принято называть законом возрастания энтропии. При любых процессах, протекающих в термодинамических изолированных системах, энтропия либо остается неизменной, либо увеличивается.

Таким образом, энтропия указывает направление самопроизвольно протекающих процессов. Рост энтропии указывает на приближение системы к состоянию термодинамического равновесия. В состоянии равновесия энтропия принимает максимальное значение. Закон возрастания энтропии можно принять в качестве еще одной формулировки второго закона термодинамики.

В 1878 году Л. Больцман дал вероятностную трактовку понятия энтропии. Он предложил рассматривать энтропию как меру статистического беспорядка в замкнутой термодинамической системе. Все самопроизвольно протекающие процессы в замкнутой системе, приближающие систему к состоянию равновесия и сопровождающиеся ростом энтропии, направлены в сторону увеличения вероятности состояния.

Всякое состояние макроскопической системы, содержащей большое число частиц, может быть реализовано многими способами. Термодинамическая вероятность W состояния системы – это число способов, которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний, осуществляющих данное макросостояние. По определению термодинамическая вероятность W >> 1.

Например, если в сосуде находится 1 моль газа, то возможно огромное число N способов размещения молекулы по двум половинкам сосуда: где– число Авогадро. Каждый из них является микросостоянием.

Только одно из микросостояний соответствует случаю, когда все молекулы соберутся в одной половинке (например, правой) сосуда. Вероятность такого события практически равна нулю. Наибольшее число микросостояний соответствует равновесному состоянию, при котором молекулы равномерно распределены по всему объему. Поэтому равновесное состояние является наиболее вероятным. С другой стороны равновесное состояние является состоянием наибольшего беспорядка в термодинамической системе и состоянием с максимальной энтропией.

Согласно Больцману, энтропия S системы и термодинамическая вероятность W связаны между собой следующим образом: S=klnW, где k = 1,38·10 –23 Дж/К – постоянная Больцмана. Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано данное макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы. Вероятностная трактовка второго закона термодинамики допускает самопроизвольное отклонение системы от состояния термодинамического равновесия. Такие отклонения называются флуктуациями. В системах, содержащих большое число частиц, значительные отклонения от состояния равновесия имеют чрезвычайно малую вероятность.

Круговые термодинамические процессы, или циклы

В рассмотренных ранее термодинамических процессах изуча­ть вопросы получения работы или вследствие подведенной теплоты, или вследствие изменения внутренней энергии рабочего тела, или одновременно вследствие того и другого. При однократном расширении газа в цилиндре можно получить лишь ограничен количество работы. Действительно, при любом процессе рения газа в цилиндре все же наступит момент, когда температура и давление рабочего тела станут равными температуре и давлению окружающей среды и на этом прекратится получение работы.

Следовательно, для повторного получения, работы необходимо в процессе сжатия возвратить рабочее тело в первоначальное состояние.

Из рисунка 8 следует, что если рабочее тело расширяется по кривой 1-3-2 то оно производит работу, изображаемую на рv-диаграмме пл. 13245. По достижении точки 2 рабочее тело должно быть возвращено в начальное состояние (в точку 1), для того чтобы оно снова могло произвести работу. Процесс возвращения тела в начальное состояние может быть осуществлен тремя путями.

Рисунок 8 – Круговые процессы.

1.Кривая сжатия 2-3-1 совпадает с кривой расширения 1-3-2. В таком процессе вся полученная при расширении работа (пл.13245) равна работе сжатия (пл. 23154) и положитель­ная работа равна нулю. Кривая сжатия 2-6-1 располагается над линией расширения 1-3-2; .при этом на сжатие затрачивается большее количество работы (пл. 51624), чем ее будет получено при расширении (пл. 51324).

Кривая сжатия-2-7-1 располагается под линией расширения 1-3-2. В этом круговом процессе работа расширения (пл. 51324) будет больше работы сжатия (пл. 51724). В результате вовне будет отдана положительная работа, изображаемая пл. 13271 внутри замкнутой линии кругового процесса, или цикла.

Повторяя цикл неограниченное число раз, можно за счет под­водимой теплоты получить любое количество работы.

Цикл, в результате которого получается положительная рабо­та, называется прямым циклом или циклом теплового двига­теля ; в нем работа расширения больше работы сжатия. Цикл, в результате которого расходуется работа, называется обратным , в нем работа сжатия больше работы расширения. По обратным циклам работают холодильные установки.

Циклы бывают обратимые и необратимые. Цикл, состоящий из равновесных обратимых процессов, называют обратимым . Рабо­чее тело в таком цикле не должно подвергаться химическим изме­нениям.

Если хоть один из процессов, входящих в состав цикла, явля­ется необратимым, то и весь цикл будет необратимым.

Результаты исследований идеальных циклов могут быть перенесены на действительные, необратимые процессы реальных машин путем введения опытных поправочных коэффициентов.

Термический кпд и холодильный коэффициент циклов

Исследование любого обратимого цикла доказывает, что для осуществления необходимо в каждой точке прямого процесса подводить теплоту от теплоотдатчиков к рабочему телу при бесконечно малой разности температур и отводить теплоту от рабочего тела к теплоприемникам также при бесконечно малой разности температур. При этом температура двух соседних источников теплоты должна отличаться на бесконечно малую величину, так как иначе при конечной разности температур процессы передачи теплоты будут необратимы: Следовательно, для создания тепло­вого двигателя необходимо иметь бесконечно большое количество теплоотдатчиков, теплоприемников и рабочее тело.

На пути 1-3-2 (рисунок 8) рабочее тело совершает удельную работу расширения , численно равную пл. 513245, за счет удель­ного количества теплоты , полученной от теплоотдатчиков, и частично за счет своей внутренней энергии. На пути 2-7-1 затра­чивается удельная работа сжатия , численно равная пл. 427154, часть которой в виде удельного количества теплоты отводится в теплоприемники, а другая часть расходуется на увеличение внутренней энергии рабочего тела до начального состояния. В ре­зультате осуществления прямого цикла будет вовне отдана поло­жительная удельная работа, равная разности между работой рас­ширения и сжатия. Эта работа .

Соотношение между удельными количествами теплоты и и положительной удельной работой определяется первым зако­ном термодинамики.

Так как в цикле конечное состояние тела совпадает с начальным, то внутренняя энергия рабочего тела не изменяется и поэтому

Отношение удельного количества теплоты, превращенного в положительную удельную работу за один цикл, ко всему удель­ному количеству теплоты, подведенному к рабочему телу, назы­вается термическим коэффициентом полезного действия прямого

цикла :

Значение является показателем совершенства цикла теплового двигателя. Чем больше , тем большая часть подведенной теплоты превращается в полезную работу. Величина термического к.п.д. цикла всегда меньше единицы и мог бы быть равна единице, если бы или , чего осуществить нельзя.

Полученное уравнение (62) показывает, что всю подведенную в цикле к рабочему телу теплоту полностью превратить в работу невозможно без отвода некоторого количества теплоты в теплоприемник.

Таким образом, основная мысль Карно оказалась верной, а именно: в замкнутом круговом процессе теплота может превратиться в механическую работу только при наличии разности температур между теплоотдатчиками и теплоприемниками. Чем больше эта разность, тем выше к.п.д. цикла теплового двигателя.

Рассмотрим теперь обратный цикл, который проходит в направлении против часовой стрелки и изображается на pv-диаграмме пл. 13261. Расширение рабочего тела в этом цикле совершается при более низкой температуре, чем сжатие, и работа расширения (пл. 132451) получается меньше работы сжатия (пл. 162451). Такой цикл может быть осуществлен только при затрате внешней работы.

В обратном цикле от теплоприемников подводится к рабочем телу теплота и затрачивается удельная работа , переходящая в равное количество теплоты, которые вместе передаются теплоотдатчикам:

Без затраты работы сам собой такой переход невозможен.

Степень совершенства обратного цикла определяется так назы­ваемым холодильным коэффициентом цикла .

Холодильный коэффициент показывает, какое количество теп­лоты отнимается от теплоприемника при затрате одной единицы работы. Его величина, как правило, больше единицы.

Циклы Карно.

Прямой обратимый цикл Карно

Обратимый цикл, осуществленный между двумя источниками теплоты постоянной температуры, должен состоять из двух обратимых изотермных и двух обратимых адиабатных процессов.

Это цикл впервые был рассмотрен Сади Карно в его работе «Размышления о движущей силе огня и о машинах, способных развивать эту силу», опубликованный в 1824 г. Для лучшего уяснения порядка осуществления данного цикла представим себе тепловую машину, ци­линдр которой может быть по мере надобности как абсолютно тепло­проводным, так и абсолютно нете­плопроводным. Пусть в первом по­ложении поршня начальные пара­метры рабочего тела а темпе­ратура равна температуре теплоотдатчика. Если в этот момент цилиндр будет абсолютно теплопроводным и если его привести в соприкосновение с теплоотдатчиком бесконечно большой энергоемкости, сообщив рабочему телу теплоту по изотерме 1-2, то газ расширится до точки 2 и совершит работу. Параметры точки 2: От точ­ки 2 цилиндр должен быть абсолютно нетеплопроводным. Рабочее тело с температурой Т 1 , расширяясь по адиабате 2-3 до темпера­туры теплоприемника Т 2 , совершит работу. Параметры точки 3: . От точки 3 делаем цилиндр абсолютно теплопроводным. Сжимая рабочее тело по изотерме 3-4, одновременно отводим теплоту в теплоприемник. В конце изотер­мического сжатия параметры рабочего тела будут . От точки 4 в абсолютно нетеплопроводном цилиндре адиабатным про­цессом сжатия 4-1 рабочее тело возвращается в первоначальное состояние.

Таким образом, за весь цикл рабочему телу от теплоотдатчика было сообщена теплота и отведена в теплоприемник теплота .

Термический к.п.д. цикла

Подведенную теплоту по изотерме 1-2 опре­деляем так:

Абсолютное значение отведенной теплоты по изотерме 3-4 находим так:

Подставляя найденные значения и в уравнение для термического к.п.д., получаем

Для адиабатного процесса расширения и сжатия соответственно имеем

и

Следовательно, уравнение термического к.п.д. цикла Карно после сокращения принимает вид

Термический к.п.д. обратимого цикла Карно зависит только от абсолютных температур теплоотдатчика и теплоприемника. Он будет тем больше, чем выше температура теплоотдатчика и чем ниже температура теплоприемника. Термический к.п.д. цикла Кар­но всегда меньше единицы, так как для получения к.п.д., равного единице, необходимо, чтобы Т 2 =0 или Т 1 = ∞, что неосуществимо. Термический к.п.д. цикла Карно не зависит от природы рабочего тела и при Т 2 -Т 1 равен нулю, т. е. если тела находятся в тепло­вом равновесии, то невозможно теплоту превратить в работу.

Термический к.п.д. цикла Карно имеет наибольшее значение
по сравнению с к.п.д. любого цикла, осуществляемого в одном и
том же интервале температур. Поэтому сравнение
термических к.п.д. любого цикла и цикла Карно позволяет делать
заключение о степени совершенства использования теплоты в машине, работающей по данному циклу.

В реальных двигателях цикл Карно не осуществляется вследствие практических
трудностей. Однако теоретическое и прак­тическое значение цикла Карно весьма ве­лико. Он служит эталоном при оценке со­вершенства любых циклов тепловых дви­гателей. .

Обратимый цикл Карно, осуществлен­ный в интервале температур Т 1 и Т 2 , изображается на Ts-диаграмме прямоугольником 1234 (рисунок 9).

Рисунок 9 – Обратимый цикл Карно.

Обратный обратимый цикл Карно

Цикл Карно может протекать не только в прямом, но и обратном направлении. На рисунке 10 представлен обратный цикл Карно. Цикл состоит из обратимых процессов и в целом является обратимым.

Рисунок 10 – Обратный цикл Карно.

Рабочее тело от начальной точки 1 расширяется по адиабате 1-4 без теплообмена с внешней средой, при этом температура Т 1 выдается до Т 2 . Затем следует дальнейшее расширение газа по изотерме 4-3 с подводом теплоты , которое отнимается от источника с низкой температурой Т 2 . Далее следует адиабатное сжатие 3-2 с увеличением температуры от Т 2 до Т 1 . В течение последнего процесса происходит изотермное сжатие 2-1, во время которого к теплоприемнику с высокой температурой отводится теплота .

Рассматривая обратный цикл в целом, можно отметить, что затра­чиваемая внешняя работа сжатия больше работы расширения на вели­чину пл. 14321 внутри замкнутой линии цикла. Эта работа превраща­ется в теплоту и передается вместе с теплотой источнику с темпера­турой Т 1 . Таким образом, затратив на осуществление обратного цикла удельную работу , можно перенести от теплоприемника к теплоотдатчику

единиц теплоты. При этом теплота, получаемая теплоприемником, равна

Машина, работающая по обратному циклу, называется холо­дильной машиной. Из рассмотрения обратного цикла Карно можно сделать вывод, что передача теплоты от источника с низкой температурой к источнику с высокой температурой, как это следует из постулата Клаузиуса, обязательно требует затраты энергии (не может совер­шаться даровым процессом без компенсации).

Характеристикой эффективности холодильных машин является холодильный коэффициент

для обратного цикла Карно

Холодильный коэффициент обратного цикла Карно зависит от абсолютных температур и источников теплоты и обладает Наибольшим значением по сравнению с холодильными коэффициентами других циклов, протекающих в тех же пределах темпе­ратур

После рассмотрения прямого и обратного циклов Карно можно несколько подробнее объяснить формулировку второго закона термодинамики, данную Клаузиусом.

Клаузиус показал, что все естественные процессы, протекающие в природе, являются процессами самопроизвольными (их иногда называют положительными (или некомпенсированными процессами) и не могут «сами собой» без компенсации протека в обратном направлении.

К самопроизвольным процессам принадлежат: переход теплоты от более нагретого тела к менее нагретому; превращение работы в теплоту; взаимная диффузия жидкостей или газов; расширение газа в пустоту и т. п.

К не самопроизвольным процессам относятся процессы, противоположные вышеприведенным самопроизвольным процессам: переход теплоты от менее нагретого тела к более нагретому; превращение теплоты в работу; разделение на составные части диффундировавших друг в друге веществ и т. п. Процессы не самопроизвольные возможны, но они никогда не протекают «сами собой» без компенсации.

Какие же процессы должны сопровождать не самопроизвольные процессы, чтобы сделать их возможными? Тщательное и всестороннее изучение окружающих нас физических явлений пока­зало, что не самопроизвольные процессы только тогда возможны, когда они сопровождаются процессами самопроизвольными. Сле­довательно, самопроизвольный процесс может произойти «сам со­бой», не самопроизвольный - только вместе с самопроизвольным. Поэтому, например, в любом прямом круговом процессе не самопроизвольный процесс превращения теплоты в работу компенси­руется одновременным самопроизвольным процессом передачи части подведенной теплоты от теплоотдатчика к теплоприемнику. .

При осуществлении обратного цикла не самопроизвольный процесс переноса теплоты от менее нагретого тела к более нагретому, также возможен, но здесь он компенсируется самопроизвольным процессом превращения затраченной извне работы в теплоту .

Таким, образом, всякий не самопроизвольный процесс может только тогда произойти, когда он сопровождается компенсирующим самопроизвольным процессом.

Теорема Карно

При выводе термического к.п.д. обратимого цикла Карно были использованы соотношения, справедливые только для идеального газа. Поэтому, для того чтобы можно было распространить все сказанное о цикле Карно на любые реальные газы и пары, необходимо доказать, что термический к.п.д. цикла Карно не зависит от свойств вещества, с помощью которого осуществляется цикл. Это и является содержанием теоремы Карно.

Теплоты. Затраченная работа

Такой же результат получается, если предположить, что . Поэтому остается один возможный вариант, когда , а это значит, что и , т. е. действительно термический к.п.д. обратимого цикла Карно не зависит от свойств рабочего тела и является только функцией температур теплоотдатчика и теплоприемника.

Лекция № 6. Предмет и задачи теории теплообмена

Согласно второму закону термодинамики самопроизвольный процесс переноса теплоты в пространстве возникает под действием разности температур и направлен в сторону уменьшения температуры. Закономерности переноса теплоты и количественные характеристики этого процесса являются предметом и задачей исследования теории теплообмена (теплопередачи).

Учение о теплопередаче – это учение о процессах распростра­нения тепла. Отличительной их особенностью является универ­сальность, так как они имеют весьма большое значение почти во всех отраслях техники.

Тепловая энергия пе­редается, как и любая другая энергия, в направлении от высше­го потенциала к низшему. Так как потенциалом тепловой энер­гии является температура , то процесс распростра­нения теп­ла тесно связан с распределением температур, т. е. с так называемым температурным полем. Температурным полем называется совокупность значений температур в прост­ранстве и времени. В общем случае температура t в любой точ­ке пространства является функцией координат х, у, z и времени τ и, следовательно, уравнение температурного поля будет

t = f(x, y, z, τ ). (65)

Поле, в котором температура меняется с изменением времени, называется неустановившимся, или нестационарным. Если температура во времени не меняется, то поле на­зывается установившимся, или стационарным , и его уравнение будет

t = f(x,y,z). (66)

Наиболее простым случаем температурного поля является ста­ционарное одномерное поле, уравнение которого имеет вид

t = f(x) . (67)

Передача тепла, происходящая в условиях нестационарного тем­пературного поля, называется теплопередачей при не­стационарном режиме , а в условиях стационарного по­ля теплопередачей при стационарном режиме.

Процесс теплообмена – сложный процесс, состоящий из трех элементарных видов теплообмена – теплопроводности, конвекции и теплового излучения (луче­испускания) (рисунок 12).

а – теплопроводность; б – конвекция; а – излучение

Рисунок 12 – Разновидности теплопе­редачи

Как генерируется энергия, как она преобразуется из одной формы в другую и что происходит с энергией в замкнутой системе? На все эти вопросы помогут дать ответ законы термодинамики. Подробнее сегодня будет рассмотрен второй закон термодинамики.

Законы в повседневной жизни

Законы управляют повседневной жизнью. В дорожных законах говорится, что нужно остановиться на знаках остановки. Правительственные требуют предоставить часть своей зарплаты государству и федеральному правительству. Даже научные применимы к повседневной жизни. Например, закон силы тяжести предсказывает довольно плохой результат для тех, кто пытается летать. Другой набор научных законов, которые влияют на повседневную жизнь, - это законы термодинамики. Итак, можно привести ряд примеров, чтобы увидеть, как они влияют на повседневную жизнь.

Первый закон термодинамики

Первый закон термодинамики гласит, что энергия не может быть создана или уничтожена, но можно преобразовать ее из одной формы в другую. Это также иногда называют законом сохранения энергии. Итак, как это относится к повседневной жизни? Ну, взять, к примеру, компьютер, который вы используете сейчас. Он питается энергией, но откуда эта энергия? Первый закон термодинамики говорит нам, что эта энергия не могла появиться из-под воздуха, поэтому она откуда-то появилась.

Можно отследить эту энергию. Компьютер питается от электричества, но откуда это электричество? Правильно, с электростанции или гидроэлектростанции. Если рассматривать вторую, то она будет связана с плотиной, которая сдерживает реку. У реки есть связь с кинетической энергией, а это означает, что река течет. Плотина превращает эту кинетическую энергию в потенциальную энергию.

Как работает гидроэлектростанция? Вода используется для вращения турбины. При вращении турбины приводится в действие генератор, который будет создавать электричество. Это электричество может быть проложено полностью в проводах от электростанции до вашего дома, чтобы при подключении шнура питания к электрической розетке электричество проникало в ваш компьютер, чтобы он мог работать.

Что произошло здесь? Уже было определенное количество энергии, которая была связана с водой в реке как кинетическая энергия. Потом она превратилась в потенциальную энергию. Затем плотина приняла эту потенциальную энергию и превратила ее в электричество, которое затем смогло попасть в ваш дом и привести в действие компьютер.

Второй закон термодинамики

Изучив этот закон, можно понять, как работает энергия и почему все движется к возможному хаосу и беспорядку. Второй закон термодинамики еще называют законом энтропии. Вы когда-нибудь задумывались, как возникла Вселенная? Согласно Теории Большого Взрыва, до того, как зародилось все вокруг, вместе собралось огромное количество энергии. После Большого Взрыва появилась Вселенная. Все это хорошо, только что это была за энергия? В начале времени вся энергия во Вселенной содержалась в одном относительно небольшом месте. Эта интенсивная концентрация представляла собой огромное количество того, что называется потенциальной энергией. Со временем она распространилась по огромному пространству нашей Вселенной.

В гораздо меньших масштабах резервуар воды, удерживаемый плотиной, содержит потенциальную энергию, так как ее расположение дает возможность протекать через плотину. В каждом случае запасенная энергия, однажды выпущенная, распространяется и делает это без каких-либо прилагаемых усилий. Другими словами, высвобождение потенциальной энергии является спонтанным процессом, который возникает без необходимости в дополнительных ресурсах. По мере того, как энергия распространяется, часть ее преобразуется в полезную и выполняет определенную работу. Остальная преобразуется в непригодную, просто называемую теплотой.

Поскольку Вселенная продолжает распространяться, она содержит все менее и менее полезную энергию. Если менее полезная доступна, меньше работы может быть сделано. Так как вода течет через плотину, она также содержит менее полезную энергию. Это уменьшение полезной энергии с течением времени называется энтропией, где энтропия - это количество неиспользуемой энергии в системе, а система - это просто совокупность объектов, составляющих целое.

Энтропия также может упоминаться как количество случайностей или хаоса в организации без организации. По мере того как полезная энергия уменьшается с течением времени, дезорганизация и хаос увеличиваются. Таким образом, по мере освобождения накопленной потенциальной энергии не все это преобразуется в полезную. Все системы испытывают это увеличение энтропии с течением времени. Это очень важно понять, и это явление называют вторым законом термодинамики.

Энтропия: случайность или дефект

Как вы, возможно, догадались, второй закон следует за первым, который обычно называют законом сохранения энергии, и он утверждает, что энергия не может быть создана и ее нельзя уничтожить. Другими словами, количество энергии во Вселенной или любой системе является постоянным. Второй закон термодинамики обычно называют законом энтропии, и он считает, что с течением времени энергия становится менее полезной, а качество ее уменьшается со временем. Энтропия - это степень случайности или дефектов, которые имеет система. Если система очень неупорядоченная, то она обладает большой энтропией. Если в системе много неисправностей, то энтропия низкая.

Говоря простыми словами, второй закон термодинамики гласит, что энтропия системы не может со временем уменьшаться. Это означает, что в природе вещи переходят от состояния порядка к состоянию беспорядка. И это необратимо. Система никогда не станет более упорядоченной сама по себе. Другими словами, в природе энтропия системы всегда увеличивается. Один из способов подумать об этом - это ваш дом. Если вы его никогда не будете убирать и пылесосить, то довольно скоро у вас будет ужасный бардак. Энтропия увеличилась! Чтобы уменьшить ее, необходимо применять энергию для использования пылесоса и швабры, чтобы очистить от пыли поверхность. Дом сам себя не уберет.

Что представляет собой второй закон термодинамики? Формулировка простыми словами гласит, что при изменении энергии из одной формы в другую форму, материя либо движется свободно, либо энтропия (беспорядок) в замкнутой системе увеличивается. Различия в температуре, давлении и плотности имеют тенденцию выравниваться горизонтально через некоторое время. Из-за силы тяжести плотность и давление не выравниваются вертикально. Плотность и давление на дне будут больше, чем сверху. Энтропия - это мера распространения материи и энергии везде, где у нее есть доступ. Наиболее распространенная формулировка второго закона термодинамики в основном связана с Рудольфом Клаузиусом, который говорил:

Невозможно построить устройство, которое не производит другого эффекта, чем перенос тепла из тела с более низкой температурой в тело с более высокой температурой.

Другими словами, все пытается поддерживать ту же температуру с течением времени. Существует много формулировок второго закона термодинамики, в которых используются разные термины, но все они означают одно и то же. Другое заявление Клаузиуса:

Тепло само по себе не происходит от холодного до более горячего тела.

Второй закон применим только к крупным системам. Он касается вероятного поведения системы, в которой нет энергии или материи. Чем больше система, тем более вероятен второй закон.

Еще одна формулировка закона:

Полная энтропия всегда увеличивается в самопроизвольном процессе.

Увеличение энтропии ΔS при протекании процесса должно превышать или быть равным отношению количества теплоты Q, переданного системе, к температуре Т, при которой теплота передается.

Термодинамическая система

В общем смысле формулировка второго закона термодинамики простыми словами гласит, что температурные различия между системами, находящимися в контакте друг с другом, имеют тенденцию к выравниванию и что работа может быть получена из этих неравновесных различий. Но при этом происходит потеря тепловой энергии, а энтропия увеличивается. Различия давления, плотности и температуры в имеют тенденцию выравниваться, если им предоставляется возможность; плотность и давление, но не температура, зависят от силы тяжести. Тепловой двигатель представляет собой механическое устройство, которое обеспечивает полезную работу из-за разницы в температуре двух тел.

Термодинамическая система - это та, которая взаимодействует и обменивается энергией с областью вокруг нее. Обмен и передача должны произойти, по крайней мере, двумя способами. Один путь должен быть передачей тепла. Если термодинамическая система «находится в равновесии», она не может изменять свое состояние или статус без взаимодействия с окружающей средой. Проще говоря, если вы находитесь в равновесии, вы «счастливая система», вы ничего не можете сделать. Если вы что-то захотите сделать, вы должны взаимодействовать с окружающим миром.

Второй закон термодинамики: необратимость процессов

Невозможно иметь циклический (повторяющийся) процесс, который полностью преобразует тепло в работу. Также невозможно иметь процесс, который переносит тепло от холодных объектов на теплые объекты без использования работы. Некоторое количество энергии в реакции всегда теряется для нагревания. Кроме того, система не может преобразовать всю свою энергию в рабочую энергию. Вторая часть закона более очевидна.

Холодное тело не может нагревать теплое тело. Тепло естественным образом стремится течь от более теплых до более прохладных областей. Если тепло перейдет от более прохладного к более теплым, это противоречит тому, что является «естественным», поэтому система должна выполнить некоторую работу, чтобы это произошло. в природе - второй закон термодинамики. Это, пожалуй, самый известный (по крайней мере, среди ученых) и важный закон всей науки. Одна из его формулировок:

Энтропия Вселенной стремится к максимуму.

Другими словами, энтропия либо остается неизменной, либо становится больше, энтропия Вселенной никогда не может снизиться. Проблема в том, что это всегда верно. Если взять флакон духов и распылить его в комнате, то скоро ароматные атомы заполнят все пространство, и этот процесс является необратимым.

Взаимосвязи в термодинамике

В законах термодинамики описываются взаимосвязи между тепловой энергией или теплом и другими формами энергии, и как энергия влияет на материю. Первый закон термодинамики гласит, что энергия не может быть создана или уничтожена; общее количество энергии во Вселенной остается неизменным. Второй закон термодинамики посвящен качеству энергии. В нем говорится, что по мере передачи или преобразования энергии все больше и больше теряется полезной энергии. Второй закон также гласит, что существует естественная тенденция превращения любой изолированной системы в более неупорядоченное состояние.

Даже когда порядок увеличивается в определенном месте, когда вы принимаете во внимание всю систему, включая окружающую среду, всегда наблюдается увеличение энтропии. В другом примере кристаллы могут образовываться из раствора соли, когда вода выпаривается. Кристаллы более упорядочены, чем молекулы соли в растворе; однако испаренная вода гораздо более беспорядочна, чем жидкая вода. Процесс, взятый в целом, приводит к чистому увеличению беспорядка.

Работа и энергия

Во втором законе объясняется, что невозможно преобразовать тепловую энергию в механическую энергию со 100-процентной эффективностью. Можно привести пример с автомобилем. После процесса нагрева газа, чтобы увеличить его давление для привода поршня, в газе всегда остается некоторое количество тепла, которое нельзя использовать для выполнения каких-либо дополнительных работ. Это отработанное тепло должно быть отброшено путем его передачи в радиатор. В случае с автомобильным двигателем это делается путем извлечения отработанного топлива и воздушной смеси в атмосферу.

Кроме того, любое устройство с подвижными частями создает трение, которое преобразует механическую энергию в тепло, которое обычно непригодно и должно быть удалено из системы путем переноса его в радиатор. Когда горячее и холодное тело контактируют друг с другом, тепловая энергия будет поступать из горячего тела в холодное тело до тех пор, пока они не достигнут теплового равновесия. Тем не менее, тепло никогда не вернется в другую сторону; разница температур двух тел никогда не будет спонтанно увеличиваться. Перемещение тепла от холодного тела к горячему телу требует работы, которую должен выполнять внешний источник энергии, такой как тепловой насос.

Судьба Вселенной

Второй закон также предсказывает конец Вселенной. Это конечный уровень беспорядка, если везде будет постоянное тепловое равновесие, никакая работа не может быть выполнена, и вся энергия будет заканчиваться как случайное движение атомов и молекул. По современным данным, Метагалактика - это расширяющаяся нестационарная система, о тепловой смерти Вселенной и речи быть не может. Тепловая смерть - это состояние теплового равновесия, при котором прекращаются все процессы.

Это положение ошибочно, так как второй закон термодинамики применяется только к замкнутым системам. А Вселенная, как известно, безгранична. Однако сам термин «тепловая смерть Вселенной» иногда используется для обозначения сценария будущего развития Вселенной, согласно которому она так и будет расширяться до бесконечности во тьму пространства, пока не обратится в рассеянный холодный прах.