Определение запыленности воздуха помещения. Методы нормализации состава воздуха рабочей зоны Методы определения содержания пыли

Исследование запыленности воздуха

Производственных помещений

Методические указания к выполнению лабораторной работы

по дисциплине «Безопасность жизнедеятельности»

для студентов всех специальностей

Новокузнецк


УДК 658.382.3(07)

Рецензент:

Доктор технических наук, профессор

кафедры технологии и автоматизации кузнечно-штамповочного производства СибГИУ

Перетятько В.Н.

Р24 Исследование запыленности воздуха производственных помещений: Метод. указ./Сост.: И.Г. Шилинговский: СибГИУ, Новокузнецк 2007. – 19 с.

Рассматриваются методы определения запыленности воздуха, приведены схемы устройства аспираторов, пробоотборника, радиационных приборов и правила пользования ими.

Предназначены для студентов всех специальностей.


Лабораторная работа

Исследование запыленности воздуха производственных помещений

Цель работы: ознакомить студентов с основными методами и приборами для измерения концентрации пыли в производственном помещении, а также научить их измерять и оценивать величину концентрации пыли.

Впроцессе выполнения лабораторной работы студенты должны:

– ознакомиться с основными сведениями о производственной пыли, ее источниках иметодах измерения концентрации;

– изучить прибор измерения концентрации пыли;

– провести эксперимент.

Основные сведения о производственной пыли

Производственной пылью называются находящиеся во взвешенном состоянии в воздухе рабочей зоны твердые частицы размером от нескольких десятков до долей микрона. Пыль принято также называть аэрозолем, имея в виду, что воздух является дисперсной средой, а твердые частицы – дисперсной фазой. Производственную пыль классифицируют по способу образования, происхождения и размерам частиц.

В соответствии со способом образования различают пыли (аэрозоли) дезинтеграции и конденсации. Первые являются следствием производственных операций, связанных с разрушением или измельчением твердых материалов и транспортировкой сыпучих веществ. Второй путь образования пыли – возникновение твердых частиц в воздухе вследствие охлаждения или конденсации паров металлов или неметаллов, выделяющихся при высокотемпературных процессах.

По происхождению различают пыль органическую, неорганическую и смешанную. Характер и выраженность вредного действия зависят, прежде всего, от химического состава пыли, который главным образом определяется ее происхождением. Вдыхание пыли может вызвать поражение органов дыхания – бронхит, пневмокониоз или развитие общих реакций (интоксикация, аллергия). Некоторые пыли обладают канцерогенными свойствами. Действие пыли проявляется в заболеваниях верхних дыхательных путей, слизистой оболочки глаз, кожных покровов. Вдыхание пыли может способствовать возникновению пневмоний, туберкулеза, рака легких. Пневмокониозы относятся к числу наиболее распространенных профессиональных заболеваний. Исключительно высокое значение имеет классификация пыли по размеру пылевых частиц (дисперсности): видимая пыль (размер свыше 10 мкм) быстро оседает из воздуха, при вдыхании она задерживается в верхних дыхательных путях и удаляется при кашле, чихании, с мокротой; микроскопическая пыль (0,25 – 10 мкм) более устойчива в воздухе, при вдыхании попадает в альвеолы легких и действует на легочную ткань; ультрамикроскопическая пыль (менее 0,25 мкм), в легких ее задерживается до 60 – 70 %, но роль ее в развитии пылевых поражений не является решающей, так как невелика ее общая масса.

Вредное действие пыли определяется также и другими ее свойствами: растворимостью, формой частиц, их твердостью, структурой, адсорбционными свойствами, электрозаряженнстыо. Например, электрозаряженность пыли влияет на устойчивость аэрозоля; частицы, несущие электрический заряд, в 2 – 3 раза больше задерживаются в дыхательном тракте.

Основным способом борьбы с пылью является предупреждение ее образования и выделения в воздух, где наиболее эффективными являются мероприятия технологического и организационного характера: внедрение непрерывной технологии, механизации работ; герметизация оборудования, пневнотранспортирование, дистанционное управление; замена пылящих материалов влажными, пастообразными, гранулирование; аспирация и др.

Большое значение имеет применение систем искусственной вентиляции, дополняющее основные технологические мероприятия по борьбе с пылью. Для борьбы с вторичным пылеобразованием, т.е. поступлением в воздух уже осевшей пыли, используют влажные методы уборки, ионизации воздуха и др.

В случаях, когда не удается снизить запыленность воздуха в рабочей зоне более радикальными мероприятиями технологического и другого характера, применяются индивидуальные защитные средства различного типа: респираторы, специальные шлемы и скафандры с подачей в них чистого воздуха.

К автоматическим приборам определения концентрации пыли относятся серийно выпускаемые промышленностью ИЗВ-1, ИЗВ-3 (измеритель запыленности воздуха), ПРИЗ-1 (переносной радио-изотопный измеритель запыленности), ИКП-1 (измеритель концентрации пыли) и др.

Необходимость строгого соблюдения ПДК требует систематического контроля за фактическим содержанием пыли в воздухе рабочей зоны производственного помещения.

Предельно-допустимые концентрации пыли

Таблица 1 – Предельно допустимые концентрации пыли

Предельно - допустимая концентрация (ПДК) вредного вещества – концентрация, которая при ежедневной работе в течение 8 ч или другой продолжительности, но не более 40 ч в неделю, за время всего рабочего стажа не может вызвать заболеваний или отклонений в состоянии здоровья. Определить запылённость воздуха – это значит измерить содержание пыли в единице объема воздуха, то есть измерить концентрацию пыли. Для определения содержания пыли в воздухе отбор проб должен производиться в зоне дыхания и рабочей зоне при характерных производственных условиях с учётом всех влияющих факторов.

Прибор для измерения концентрации пыли

Используемый прибор – радиоизотопный переносной концен-тратомер пыли «Приз-01», предназначенный для экспресс-анализа концентрации пыли непосредственно на рабочих местах и промышленных площадках.

Концентратомер работает в полуавтоматическом режиме: после взвода механизма датчика операции отбора пробы пыли и замера навески, возврат в первоначальное положение производится автоматически.

Измеренное значение концентрации пыли выводится в цифровом поле на табло прибора.

Методика измерения концентрации пыли

Методы измерения концентрации пыли делятся на две группы: методы, основанные на предварительном осаждении (весовой, радиоизотопный, оптический, пьезоэлектрический и др.) и методы без предварительного осаждения пыли (оптический, электрический, акустический).

Основным преимуществом методов первой группы является возможность измерения массовой концентрации ныли.

В лабораторной работе применяются весовой и радиоизотопный методы измерения концентрации пыли.

Весовой метод основан на протягивании запыленного воздуха через фильтр, задерживающий пылевые частицы. Зная массу фильтра до и после отбора пробы, а также количество протянутого воздуха, можно определить содержание пыли в единице объема воздуха. Концентрацию пыли рассчитывают по формуле:

где Δm –масса пыли на фильтре, мг;

V – объемная скорость просасывания воздуха через фильтр, л/мин.;

t – время отбора пробы, мин.

Место отбора проб запыленного воздуха – макет производственного помещения с размещенными в нем источниками пыли (аэрозоля) различного состава.

Используемые фильтры – фильтры АФА из ткани ФПП (на основе перхлорвиниловой ткани). Они стойки к химически агрессивным средам, обладают высоким процентом задерживания частиц.

Побудитель движения воздуха – электрический аспиратор модели 882, имеющий устройство для измерения объемной скорости движения воздуха (реометры). Оптимальной является скорость отбора пробы, равная скорости человеческого дыхания (легочная вентиляция) – 10 – 15 л/мин.

Радиоизотопный метод основан на использовании свойства радиоактивного излучения поглощаться частицами пыли. Запыленный воздух предварительно фильтруют, затем определяют массу осевшей пыли по ослаблению радиоактивного излучения при прохождении его через пылевой осадок.

Экспериментальная часть

Задание . Измерить концентрацию пыли в макете производственного помещения и подобрать средства защиты органов дыхания.

1. Ознакомиться с устройством установки.

2. Включить установку и необходимые приборы.

3. Произвести три отбора пробы пыли (состав задается преподавателем).

4. Выключить установку и приборы.

Производственных помещений

Цель работы: определение концентрации пыли в воздухе весовым методом и санитарная оценка запыленности производственной среды.

Основные понятия и определения

Пылью называют дисперсную систему, состоящую из мельчайших твердых частиц, находящихся в газовой среде во взвешенном состоянии (аэрозоль) или осевших (аэрогель).

Пыль подразделяется на атмосферную и промышленную. Источниками образования промышленной пыли являются технологические процессы и производственное оборудование, связанное с измельчением (дробление, помол, резание) и поверхностной обработкой материалов (шлифование, полирование, ворсование и т.п.), транспортировкой, перемещением и упаковкой измельченных материалов и т.д. Атмосферная пыль включает промышленную (загрязнение атмосферного воздуха выбросами промышленных предприятий) и естественную, возникающую при выветривании горных пород, вулканических извержениях, пожарах, ветровой эрозии пахотных земель, пыли космического и биологического происхождения (пыльца растений, споры, микроорганизмы). К промышленным предприятиям, выбрасывающим в атмосферу частицы пыли, относятся предприятия черной металлургии, теплоэнергетики, химической, нефтеперерабатывающей промышленности, промышленности строительных материалов и др.

Гигиеническими нормативами ГН 2.2.5.686–98 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны» и ГОСТ 12.1.005–88 «ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны» установлены предельно допустимые концентрации для более чем 800 различных веществ (в мг/м 3). ПДК вредных веществ в воздухе рабочей зоны считается такая концентрация, которая при ежедневной работе в течение 8 часов или другой продолжительности, но не более 41 часа в неделю, в течение всего рабочего стажа не может вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующего поколений. В прил. 1 приведены ПДК веществ в воздухе рабочей зоны.

Пыль классифицируют по следующим признакам: по роду вещества, из которого состоят частицы, степени дисперсности (измельчения), степени вредного влияния на организм человека, взрыво- и пожароопасности.

По происхождению пыль подразделяют на три основных подгруппы:

1. Органическая:

Естественная (растительного происхождения – древесная, хлопковая, и животного – костяная, шерстяная);

Искусственная (пыль пластмасс, резины, смол, красителей и других синтетических веществ).

2. Неорганическая:

Металлическая (стальная, медная, свинцовая);

Минеральная (песчаная, известковая, цементная).

3. Смешанная.

По дисперсности пыль подразделяют на три группы:

1) видимая (размеры частиц более 10 мкм);

2) микроскопическая (0,25-10 мкм);

3) ультрамикроскопическая (менее 0,25 мкм).

Опасность пыли увеличивается с уменьшением размера пылинок, так как такая пыль дольше остается в виде аэрозоля в воздухе и глубже проникает в легочные каналы.

Вредность воздействия пыли на организм человека зависит от степени запыленности воздуха, характеризующейся концентрацией (мг/м 3), и различных свойств пыли: химического состава, растворимости, дисперсности, формы частиц и адсорбционной способности. По воздействию на организм пыль подразделяется на ядовитую и неядовитую.

В организм человека пыль проникает тремя путями: через органы дыхания, желудочно-кишечный тракт и кожу.

В зависимости от состава пыль может оказывать на организм:

1. Фиброгенное действие – в легких происходит разрастание соединительной ткани, нарушающее нормальное строение и функции органа (кварцевая, породная).

2. Раздражающее действие на верхние дыхательные пути, слизистую оболочку глаз, кожу (известковая, стекловолокна).

3. Токсическое действие – ядовитые пыли, растворяясь в биологических средах организма, вызывают отравления (свинцовая, мышьяковистая).

4. Аллергическое действие (шерстяная, синтетическая).

5. Биологическое действие (микроорганизмы, споры).

6. Канцерогенное действие (сажа, асбест).

7. Ионизирующее действие (пыль урана, радия).

В легкие глубоко проникают пылинки размером от 0,1 до 10 мкм. Более мелкие выдыхаются обратно, а крупные оседают на слизистых оболочках полости носа, глотки, трахеи и выводятся наружу со слизью при кашле и чихании. Часть пыли задерживается в носу и носоглотке, вместе со слюной и слизью попадает в органы пищеварения. Более мелкие, не осевшие, пылевидные частицы при вдохе проникают в глубокие дыхательные пути, вплоть до ткани легких. В легких задерживаются частицы, не превышающие 7 мкм. При проникновении в дыхательные пути пыль может вызывать профессиональные заболевания – пневмокониозы (ограничение дыхательной поверхности легких и изменения во всем организме человека), хронические бронхиты, заболевания верхних дыхательных путей. Химический состав пыли определяет характер тех или иных профессиональных заболеваний. Например, при вдыхании угольной пыли возникает разновидность пневмокониоза – антракоз, алюминиевый алтинноз, свободного диоксида кремния SiO 2 – силикоз и т.д.

Попадая на кожу, пыль проникает в сальные и потовые железы и нарушает систему терморегуляции организма. Неядовитая пыль оказывает раздражающее воздействие на кожу, глаза, уши, дёсны (шероховатости, шелушение, угри, асбестовые бородавки, экземы, дерматиты, конъюктивиты и др.).

Растворимость пыли зависит от ее состава и удельной поверхности (м 2 /кг), поскольку химическая активность пыли в отношении организма зависит от общей площади поверхности. Сахарная, мучная и другие виды пыли, быстро растворяясь в организме, выводятся, не причиняя особого вреда. Нерастворимая в организме пыль (растительная, органическая и т.п.) надолго задерживается в воздухоносных путях, приводя в отдельных случаях к развитию патологических отклонений.

Форма пылинок влияет на устойчивость аэрозоля в воздухе и поведение в организме. Частицы сферической формы быстрее выпадают из воздуха и легче проникают в легочную ткань. Наиболее опасны пылинки с зазубренной колючей поверхностью, так как они могут вызывать травмы глаз, ткани легких и кожи.

Адсорбционные свойства пыли находятся в зависимости от дисперсности и суммарной поверхности. Пыль может быть носителем микробов, грибов, клещей.

Пыли могут также приобретать электрический заряд за счет адсорбции ионов из воздуха и в результате трения частиц в пылевом потоке, что увеличивает их вредное воздействие. Неметаллическая пыль заряжается положительно, а металлическая – отрицательно. Разноименно заряженные частицы притягиваются друг к другу и оседают из воздуха. При одинаковом заряде пылинки, отталкиваясь одна от другой, могут долго витать в воздухе. Заряженные частицы дольше задерживаются в легких, чем нейтральные, тем самым увеличивается опасность для организма.

Негативным свойством многих видов пыли является их способность к воспламенению и взрыву. В зависимости от величины нижнего предела воспламенения пыли подразделяются на взрывоопасные и пожароопасные. К взрывоопасным относятся пыли с нижним пределом воспламенения до 65 г/м 3 (сера, сахар, мука), к пожароопасным – пыли с нижним пределом воспламеняемости выше 65 г/м 3 (табачная, древесная и др.).

Для защиты от пыли на производстве применяется комплекс санитарно-гигиенических, технических, организационных и медико-биологических мероприятий. Эффективными средствами защиты являются: внедрение комплексной механизации и автоматизации производственных операций с автоматическим или дистанционным управлением и контролем, герметизация оборудования, приборов и коммуникаций, размещение опасных узлов и аппаратов вне рабочих зон, замена сухих способов переработки пылящих материалов мокрыми, применение местных отсосов от оборудования и аппаратуры, автоблокировка пусковых устройств технологического и санитарно-гигиенического оборудования, гидрообеспыливание. Эти средства относятся к общим методам защиты работающих и оборудования от пыли. В качестве индивидуальных средств защиты от пыли используются респираторы, противогазы, пневмошлемы, пневмомаски, непроницаемая противопыльная спецодежда, защитные очки и т.п. Важную роль играют также защита временем, ультрафиолетовое облучение в фотариях, щелочные ингаляции, проведение медосмотров, соблюдение личной гигиены, применение специального питания.

Воздух рабочей зоны (пространство высотой до 2 м над уровнем пола или площадки, на которых находятся места постоянного и временного пребывания работающих) очищается следующими способами: при сухом разломе материалов устанавливают улавливатели взвешенной в воздухе пыли, применяют пневматическое транспортирование полученного продукта, обеспечивают отсасывание (аспирацию ) пыли из-под укрытий в местах ее образования. Создаваемое при аспирации разрежение в укрытии, соединенном с воздуховодом вытяжной вентиляции, не позволяет загрязненному воздуху поступать в воздух рабочей зоны. Отсосы от оборудования и аппаратуры выполняют сблокированными с пусковым устройством основного оборудования. Перед выбросом в атмосферу или рабочее помещение запыленный воздух подвергают предварительной очистке.

Важным показателем работы обеспыливающего оборудования является степень очистки воздуха:

где m 1 и m 2 – содержание пыли в воздухе соответственно до и после очистки, мг/м 3 ; V 1 и V 2 – объем воздуха соответственно до и после очистки, м 3 .

Очистка воздуха от пыли может быть грубой (задерживается крупная пыль – размеры частиц более 100 мкм), средней (задерживается пыль с размером частиц менее 100 мкм, а ее конечное содержание не должно быть более 100 мг/м 3) и тонкой (задерживается мелкая пыль (до 10 мкм) с конечным содержанием в воздухе приточных и рециркуляционных систем до 1 мг/м 3). Обеспыливающее оборудование подразделяется на пылеуловители и фильтры . К пылеуловителям относятся пылеосадочные камеры, одиночные и батарейные циклоны, инерционные и ротационные пылеуловители. Фильтры в зависимости от принципа действия классифицируют на электрические, ультразвуковые, масляные, матерчатые, рукавные и др. (см. рис. 2.1–2.3).

А Б

Рис. 2.1. Пылеуловительные камеры:

а – простая; б – лабиринтная

Рис. 2.2. Схема циклона:

1 – входной патрубок; 2 – дно конической части; 3 – центробежная труба

Рис. 2.3. Электрический (а ) и ультразвуковой (б ) фильтры:

1 – изолятор; 2 – стенка фильтра; 3 – коронирующий электрод; 4 – заземление;

5 – генератор ультразвука; 6 – циклон

Для определения качества воздуха на рабочем месте существуют методы контроля, которые подразделяются на две группы: первая – с выделением дисперсной фазы из аэрозоля (весовой и счетный методы), вторая – без выделения дисперсной фазы из аэрозоля (фотоэлектрические, электрометрические, радиационные и оптические методы). Наиболее часто применяются весовой и счетный методы. Обычно в практике инспекторского контроля предпочтение отдают весовому методу.

Весовой метод

Весовой метод является наиболее гигиенически обоснованным методом оценки запыленности воздуха рабочей зоны. Он положен в основу действующей системы стандартов безопасности труда (ССБТ) как стандартный. Сущность метода заключается в том, что определенный объем запыленного воздуха пропускают через высокоэффективный фильтр и по увеличению массы и объему профильтрованного воздуха рассчитывают массовую концентрацию пыли:

где с – массовая концентрация пыли, мг/м 3 ; G n – масса пыли, осевшей на фильтре, мг; V 0 – объем профильтрованного воздуха, приведенного к нормальным условиям (температуре 0 о С и барометрическому давлению B 0 = 760 мм рт. ст.), м 3 .

, (2.2)

где P 0 , P – барометрическое давление, Па, соответственно при нормальных и рабочих условиях (P 0 = 101325 Па, P = B×133,322 Па); Т – температура воздуха в месте отбора пыли, о С; V – объем воздуха, пропущенного через фильтр при температуре Т и давлении В , м 3 ,

где w – объемная скорость просасывания воздуха через фильтр, л/мин;
t – продолжительность отбора пробы, мин.

Счетный метод

В ряде отраслей промышленности предъявляются повышенные требования к чистоте воздушной среды, например для изготовления радиоэлектронной аппаратуры, кинофотоматериалов, медицинских препаратов и т.п. Здесь действуют ведомственные нормы к качеству воздуха, которые устанавливают предельно допустимые концентрации пыли в счетных показателях, выражающихся в числе частиц на литр или на см 3 . Контроль запыленности воздуха в этом случае осуществляется счетным методом. Сущность его заключается в предварительном выделении пыли из воздуха и осаждении ее на предметных стеклах с последующим подсчетом числа частиц с помощью микроскопа. Разделив определенное расчетом число частиц на объем воздуха, из которого они осаждены, получают счетную концентрацию пыли (частиц/л):

,

где К п – количество полей зрения (клеток сетки) в 1 см 2 окуляра микроскопа; n ср – среднее количество пылинок в одном поле зрения, определенное на основе подсчета в пяти различных клетках; F – площадь основания емкости, из которой осаждены пылинки, см 2 ; V, h – объем и высота этой емкости соответственно, см 3 и см.

Для определения счетной концентрации пыли применяются кониметры, состоящие из увлажнительной трубки, поршневого насоса, приемной камеры и предметного стекла, поточные ультрамикроскопы ВДК, фотоимпульсные приборы и др. Наиболее распространен автоматический счетчик частиц типа АЗ-2М, позволяющий одновременно с замером счетной концентрации определять дисперсный состав пыли.


Похожая информация.


Воздух протягивается 1 минуту по 20 л/мин. Вес фильтра до взятия пробы 707,40 мг. , после отбора пробы - 708,3 мг. Температура воздуха в помещении 22°С, атмосферное давление 680 мм.рт.ст.

1. Объем воздуха, протянутого через фильтр, приведем к нормальным условиям:

2. Концентрация пыли в воздухе:

После расчета концентрации пыли в воздухе произвести гигиеническую оценку запыленности воздушной среды путем сопоставления с требованиями СН-245-71 о предельно допустимых концентрациях пыли в воздухе.

Цель работы.

Применяемые приборы и оборудование.

  • 3. Протокол измерений (см табл. 4), расчет концентрации пыли по приведенным формулам, определение дисперсности пыли (см. табл. 4).
  • 4. Выводы: гигиеническая оценка запыленности воздуха и рекомендации по улучшению состояния воздушной среды.

Контрольные вопросы

запыленность воздух концентрация проба

Классификация пыли по различным признакам.

Гигиеническая оценка запыленности воздуха.

Воздействие пыли, на организм человека.

Профессиональные заболевания, вызываемые воздействием пыли.

Предельно допустимые концентрации вредных веществ в воздухе рабочей зоны.

Классификация вредных веществ по степени воздействия.

Предельно допустимые концентрации вредных выбросов.

Методы определения запыленности.

9. Устройство приборов для определения концентрации пыли.

Приборы, применяемые при счетном методе анализа запыленности.

Правила отбора проб для определения запыленности.

Методы определения запыленности воздуха

Запыленность воздуха можно определить гравиметрическим (весовым), счетным (микроскопическим), фотометрическим и некоторыми другими методами.

Удаление пыли из воздуха может быть осуществлено различными способами: аспирационным, основанной на просасывании воздуха через фильтр; седиментационными, основанный на процессе естественного оседания пыли на стеклянные пластинки или банки с последующим подсчетом массы пыли, осевший на 1 м поверхности; с помощью электроосаждения, принцип которого заключается в том, что создается электрическое поле большого напряжения, в котором пылевые частицы электризуются и притягиваются к электродам.

В санитарно-гигиенической практике основным методом определения запыленности принят гравиметрический метод, потому что при постоянстве химического состава первичное значение имеет масса пыли, задержалась в организме человека. Определение только массы пыли не дает полной картины его вредности для человека и технологического процесса, так как при одинаковой массе может быть разный химический, гранулометрический состав пыли, что сказывается на его воздействии на человека, оборудования и технологии. Полная характеристика пыли состоит из его массы, содержащейся в единице объема воздуха, химического и дисперсного состава.

Счетный (микроскопический) метод дает возможность определить общее количество пылевых частиц в единице объема воздуха и соотношение их размеров. Для этого пыль, содержащаяся в определенном объеме воздуха, осаждают на стекло, покрытое прозрачной клейкой пленкой. Под микроскопом определяют форму, количество и размеры пылевых частиц.

Качественную характеристику пыли определяют фотометрическим методом с Помощью текущего ультрафотометра, которым регистрируются отдельные пылевые частицы с помощью сильного бокового света.

Для отделения пыли от воздуха применяются различные фильтры, которые задерживают пылевые частицы размером до 0,1 мкм и более, в зависимости от размера пор фильтра. Такие фильтры выпускаются во многих странах. Материал фильтров может быть различным в зависимости от его назначения: целлюлоза, синтетические материалы, асбест (для определения горючих частиц пыли). Также применяются комбинированные фильтры. Выпускаются специальные фильтры, пропитанные иммерсионных маслом, что делает их прозрачными - это и позволяет дополнительно делать микроскопические исследования пыли.

В Украине чаще всего применяются фильтры АФА (аналитический фильтр аэрозольный) круглой формы с плоскостями фильтрации 3; 10, 20 см2, которые имеют опорное кольцо, фильтрующий элемент и защитное бумажное кольцо с выступлением. Фильтрующий элемент состоит из равномерного слоя ультратонких волокон из полимера на марлевой основе или без нее (фильтр Петрянова). Фильтры позволяют работать с ними без предварительного подсушивания через гидрофобные свойства полимера.

Методы нормализации состава воздуха рабочей зоны

Существует много различных способов и мер, предназначенных для поддержания чистоты воздуха производственных помещений в соответствии с требованиями санитарных норм. Все они сводятся к конкретным мерам:

1. Предотвращение проникновения вредных веществ в воздухе рабочей зоны за счет герметизации оборудования, уплотнения соединений, люков и отверстий, совершенствование технологического процесса.

2. Удаление вредных веществ, попадающих в воздух рабочей зоны, за счет вентиляции, аспирации или очистки и нормализации воздуха с помощью кондиционеров.

3. Применение средств защиты человека.

Герметизация и уплотнение являются основными мерами по совершенствованию технологических процессов, в которых используются или образуются вредные вещества. Применение автоматизации позволяет вывести человека из загрязненного помещения в помещение с чистым воздухом. Совершенствование технологических процессов позволяет заменять вредные вещества безвредными, отказываться от применения пылящих процессий, заменять твердое топливо на жидкое или газообразное, устанавливать газ, пылеуловители в технологический цикл и др.

При несовершенства технологии, когда избежать проникновения вредных веществ в воздух не удается, применяют их интенсивное удаление с помощью вентиляционных систем (газ, пар, аэрозоли) или аспирационных систем (твердые аэрозоли). Установка кондиционеров воздуха в помещениях, где есть особые требования к его качеству, создает нормальные микроклиматические условия для работающих.

Особые требования предъявляются к помещениям, где проводятся работы с вредными веществами, пылящих. Так, пол, стены, потолок должны быть гладкими, легко мыться. В цехах, где выделяется пыль, регулярно делают влажную или вакуумное уборки.

В помещениях, где нельзя создать нормальные условия, соответствующие нормам микроклимата, применяют средства индивидуальной защиты (313).

Согласно ГОСТ 12.4.011-87 "ССБТ Средства защиты работающих. Классификация", все 313, в зависимости от назначения, делятся на следующие классы: изолирующие костюмы, средства защиты органов дыхания, одежда специальная защитная, средства защиты ног, средства защиты рук, средства защиты головы, средства защиты лица, средства защиты глаз, средства защиты органов слуха, средства защиты от падения с высоты и другие меры предосторожности, защитные дерматологические средства, средства защиты комплексные.

Эффективное применение 313. зависит от их правильного выбора и условий эксплуатации. При выборе необходимо учитывать конкретные условия производства, вид и длительность воздействия вредного фактора, а также индивидуальные особенности человека. Только правильное применение 313 может максимально защитить работающего. Для этого работники должны быть ознакомлены с ассортиментом и назначением 313.

Для работы с ядовитыми и загрязняющих веществ пользуются спецодеждой - комбинезонами, халатами, фартуками и др.; для защиты от кислот и щелочей - резиновой обувью и перчатками. Для защиты кожи, рук, лица, шеи применяют защитные кремы и пасты: антитоксические, водостойкие, Жиростойкие. Глаза от возможных ожогов и аэрозолей защищают очками с герметичной оправой, масками, шлемами.

К средствам индивидуальной защиты органов дыхания (СИЗОД) относятся респираторы, промышленные противогазы и изолирующие дыхательные аппараты, применяемые для защиты от вредных веществ (аэрозолей, газов, паров), находящихся в окружающей воздухе.

По принципу действия СИЗОД подразделяются на фильтрующие (применяются при наличии в воздухе свободного кислорода не менее 18% и ограниченного содержания вредных веществ) и изолирующие (при недостаточном для дыхания содержания в воздухе кислорода и неограниченного количества вредных веществ).

По назначению фильтрующие СИЗОД делятся на:

противопылевые - для защиты от аэрозолей (респираторы ШБ-1, "Лепесток", "Кама", "Снежок", У-2К, РП-К, "Астра-2", Ф-62Ш, РПА и др.);

противогазовые - для защиты от газопароподибних вредных веществ (респираторы РПГ-67А, РПГ-67В, РПГ-67КД, противогазы марок А, В, КД, Г, Е, СО, М, БКФ и др.);

газопылезащитные - для защиты от парогазоподибних и аэрозольных вредных веществ одновременно (Респираторы Ру 60М, "Снежок ПГ", "Лепесток-Г");

изолирующие аппараты - бывают шланговые и автономные.

Изолирующие шланговые аппараты предназначены для работы в атмосфере, содержащий менее 18% кислорода. Они имеют длинный шланг, по которому подается воздух для дыхания с чистой зоны. Недостатки их в том, что дыхательный шланг мешает работать, не позволяет свободно двигаться (противогаз шланговый ПШ-И без принудительной подачи воздуха, длина шланга 10 м; ПШ-2 с воздуходувкой - обеспечивает работу двух человек одновременно, длина шлангов 20 м; респиратор для художников РМП-62; пневмошлемы ЛИЗ-4, ЛИЗ-5, миотом-49 - работают от компрессорной воздушной линии).

Изолирующие автономные дыхательные аппараты работают от автономного химического источника кислорода или от баллонов с воздухом или дыхательной смесью. Они предназначены для выполнения спасательных работ или эвакуации людей из загазованной зоны.

Саморятивиик шахтный малогабаритный ШСМ-1. Имеет химический источник кислорода. Срок пользования 20-100 минут в зависимости от интенсивности расходования кислорода (энергозатрат), вес 1,45 кг.

Респиратор изолирующий вспомогательный РВЛ-1. Имеет баллон со сжатым кислородом и регенеративный химический патрон для регенерации кислорода. Работает 2:00, вес 9 кг.

Респиратор "Урал-7". Принцип действия такой же, как в респиратора РВЛ-И, но он более габаритный. Действует 5:00, весит 14 кг. Носится за плечами, масс амортизационные устройства для удобства ношения.

Респиратор Р-30 имеет такую ​​же систему жизнеобеспечения, и приведенный выше. Рассчитан на 4:00 действия, весит 11,8 кг.

Дыхательный аппарат АСВ-2 состоит из 2-х воздушных баллонов, маски или загубника, шланга, редуктора, имеет манометр для контроля за давлением воздуха, предохранительный клапан и др. Предназначен для защиты органов дыхания в условиях загрязненной атмосферы.

Назовите типы искусственных заземлителей.

Выносное и контурное + горизонтальное и вертикальное (условное)

20. Как можно снизить величину сопротивления заземлителя?

Общее сопротивление заземления зависит, как указывалось выше, от сопротивления прилегающих к заземлителю слоев грунта. Поэтому можно добиться снижения сопротивления заземления понижением удельного сопротивления грунта лишь в небольшой области вокруг заземлителя.

Искусственное снижение удельного сопротивления грунта достигается либо химическим путем при помощи электролитов, либо путем укладки заземлителей в котлованы с насыпным углем, коксом, глиной.

Запыленность

1, Что называется пылью?

Пылью называются измельченные частицы твердого вещества, способные в течение некоторого времени находиться в воздухе во взвешенном состоянии.

2. В чем заключается гигиеническая вредность пыли?
Пыль представляет собой гигиеническую вредность, так как она отрицательно влияет на организм человека. Под воздействием пыли могут возникать такие заболевания, как пневмокониозы, экземы, дерматиты, конъюнктивиты и др. Чем мельче пыль, тем она опаснее для человека. Наиболее опасными для человека считаются частицы размером от 0,2 до 7 мкм, которые, попадая в легкие при дыхании, задерживаются в них и, накапливаясь, могут стать причиной заболевания.

Существует три пути проникновения пыли в организм человека: через органы дыхания, желудочно-кишечный тракт и кожу.

3, что такое ПДК вредного вещества?

Преде́льно допусти́мая концентра́ция (ПДК) - утверждённый в законодательном порядке санитарно-гигиенический норматив. Под ПДК понимается такая концентрация химических элементов и их соединений в окружающей среде, которая при повседневном влиянии в течение длительного времени на организм человека не вызывает патологических изменений или заболеваний, устанавливаемых современными методами исследований в любые сроки жизни настоящего и последующего поколений.

Сущность весового метода определения концентрации пыли.

Сущность метода заключается в том, что определенный объем запыленного воздуха пропускают через высокоэффективный фильтр и по увеличению массы и объему профильтрованного воздуха рассчитывают массовую концентрацию пыли:

5. Каким образом измеряется счетная концентрация пыли?

Сущность его заключается в предварительном выделении пыли из воздуха и осаждении ее на предметных стеклах с последующим подсчетом числа частиц с помощью микроскопа. Разделив определенное расчетом число частиц на объем воздуха, из которого они осаждены, получают счетную концентрацию пыли (частиц/л):



6. Как измеряется объем воздуха, просасываемого через фильтр при весовом методе измерения концентрации пыли?

V0 – объем профильтрованного воздуха, приведенного к нормальным условиям (температуре 0 оС и барометрическому давлению B0 = 760 мм рт. ст.), м3.

где P0, P – барометрическое давление, Па, соответственно при нормальных и рабочих условиях (P0 = 101325 Па, P = B×133,322 Па); Т – температура воздуха в месте отбора пыли, оС; V – объем воздуха, пропущенного через фильтр при температуре Т и давлении В, м3,

где w – объемная скорость просасывания воздуха через фильтр, л/мин;
t – продолжительность отбора пробы, мин.

7. Какие санитарно-технические мероприятия позволяют снижать концентрацию пыли на рабочих местах до уровня ПДК?

7.4. Для снижения запыленности и создания допустимых параметров микроклимата в кабинах машин необходимо уплотнение дверей и окон и использование установок, для очистки, подогрева или охлаждения воздуха.

7.5. Применение в разрезах машин с двигателями внутреннего сгорания без эффективных средств нейтрализации и очистки выхлопных газов не допускается. Нейтрализаторы и средства очистки должны обеспечить содержание вредных веществ в воздухе рабочей зоны на уровнях, не превышающих ПДК. Применение этилированного бензина запрещается.

7.6. График движения автомашин не должен допускать их скопление с работающими двигателями на рабочих площадках, уступах, участках дороги. Минимальная дистанция между большегрузными самосвалами (10 т и выше) должна быть не менее 30 м. При организации погрузочных работ следует отдавать предпочтение петлевой схеме подъезда автотранспорта к месту погрузки.

7.7. Горная масса, нагруженная в кузов самосвала, вагон или на транспортерную ленту в теплый период года должна подвергаться орошению. Факел орошения должен перекрывать площадь погрузки.

7.8. Для улучшения воздухообмена в разрезах должны предусматриваться направляющие и защитные аэродинамические устройства, регулирующие естественные потоки воздуха.

7.9. При длительных инверсиях и штилях в случае накопления вредных газов на рабочих местах в застойных зонах разрезов глубиной более 100 м должна предусматриваться искусственная вентиляция с использованием специальных устройств.

7.10. При проектировании, изготовлении или импорте горных, транспортных и других машин следует учитывать возможное их использование в различных климато-географических регионах и горно-геологических зонах страны (наличие: полярного дня и ночи, многолетней мерзлоты, специфики горных пород, сильных ветров, штилей, температурных инверсий, широкого температурного диапазона наружного воздуха от + 40 °С до - 60 °С, длительных туманов), а также содержание токсичных веществ в выхлопных газах, которое должно соответствовать отечественным нормативам.