Секреты никелирования металлических предметов в домашних условиях. Никелирование химическое Оборудование для никелирования в домашних условиях

Никелирование - нанесение на поверхность изделий никелевого покрытия (толщиной, как правило, от 1-2 до 40-50 мкм).

Никелирование металлов в домащних условиях вполне осуществимый процесс.

Предмет перед никелированием должен быть подготовлен. Обработайте его наждачной бумагой, чтобы удалить оксидную пленку, протрите щеткой, как следует промойте водой, обезжирьте в горячем содовом растворе и промойте еще раз.

Есть два способа никелирования: электролитический и химический.

Электролитическое никелирование металлов в домашних условиях

Перед никелированием выполните предварительное металлического предмета.

Приготовьте электролит (30 г сульфата никеля, 3,5 г хлорида никеля и 3 г борной кислоты на 100 мл воды) и налейте этот электролит в емкость. Для никелирования нужны никелевые электроды - аноды. Опустите их в электролит. Между ними на проволочке подвесьте деталь. Те проволочки, которые идут от никелевых пластинок, соедините вместе и подключите к положительному полюсу источника тока, а деталь - к отрицательному; включите в цепь реостат, чтобы регулировать ток, и миллиамперметр (тестер). Источник постоянного тока с напряжением не более 6 В.

Включите ток, примерно, на двадцать минут. Выньте деталь, промойте и просушите ее. Она покрыта сероватым матовым слоем никеля. Чтобы покрытие приобрело привычный блеск, его надо отполировать.

Недостатки электролитического никелирования - неравномерность осаждения никеля на рельефной поверхности и невозможность покрытия узких и глубоких отверстий, полостей и т.п.

Химическое никелирование

Помимо гальванического способа можно пользоваться еще следующим, весьма несложным способом для покрытия полированной стали или железа тонким, но весьма прочным слоем никеля.

Берут 10%-ный раствор чистого хлористого цинка и постепенно добавляют к раствору сернокислого никеля, пока жидкость не окрасится в ярко-зеленый цвет, затем ее медленно нагревают до кипения, лучше всего в фарфоровом сосуде. Могущая при этом появиться муть не оказывает никакого влияния на никелирование, которое производится следующим образом: когда вышеупомянутая жидкость будет доведена до кипения, в нее опускают предмет, подлежащий никелированию, причем последний предварительно должен быть тщательно очищен и обезжирен. Предмет кипятят в растворе около часа, добавляя время от времени дистиллированной воды по мере ее выпаривания. Если во время кипения будет замечено, что цвет жидкости вместо ярко-зеленого стал слабо-зеленым, то добавляют понемногу сернокислый никель до получения первоначального цвета.

По истечении означенного времени предмет вынимают из раствора, промывают в воде, в которой распущено небольшое количество мела, и тщательно просушивают. Полированное железо или сталь, покрытые указанным способом никелем, весьма прочно держат это покрытие.

НИКЕЛИРОВАНИЕ , технический процесс нанесения на поверхность металлов б. или м. тонкой пленки металлического никеля или никелевых сплавов; цель этого нанесения - уменьшить коррозию металла, увеличить твердость наружного слоя, повысить или изменить отражательную способность поверхности, сообщить ей более красивый вид. Полученное впервые Беттгером в 1842 г. и промышленно осуществленное в США с 1860 г., никелирование в настоящее время сделалось одним из наиболее широко усвоенных промышленностью способов покрытия металлов.

Существующие многочисленные способы никелирования могут быть подразделены на две главные группы: способы контактные и способы гальванотехнические ; в настоящее время особенно часто прибегают к последним. Нанесение никелевой пленки применяется в отношении поверхностей различных металлов, причем в соответствии с характером никелирования их можно разделить на группы: 1) медные, латунные, бронзовые, цинковые, 2) железные, 3) оловянные, свинцовые и из сплавов типа британия-металла, 4) алюминиевые и из алюминиевых сплавов. Никелевые пленки представляют вполне удовлетворительную защиту железа от ржавления во внутренних помещениях.

Однако они недостаточны под открытым небом; кроме того на отполированные никелированные поверхности действуют горячие жиры, уксус, чай, горчица, вследствие чего столовая и кухонная никелированная посуда покрывается пятнами. В тех случаях когда требуется вполне надежная защита от воздействия непогоды и вместе с тем нарядный вид никелированной поверхности, на железо д. б. наложена двойная пленка - цинковая, а затем никелевая. Этот способ двойного покрытия (цинком, а затем никелем) применяется также в отношении т. н. корсетной стали. При необходимости получить особенно стойкие пленки, как например, на проволоках, откладывают одновременно никель и платину, причем содержание последней постепенно повышают от 25% до 100% и, наконец, прокаливают предмет в струе водорода при 900-1000°С. Крупные изделия, например, котлы для варки, барабаны центрифуг или вентиляторы, если по экономическим условиям не могут быть сделаны из чистого никеля, но недостаточно стойки при никелевой пленке по железу или меди, облицовываются слоем свинца в несколько мм, а по нему слоем никеля в 1-2 мм. Ржавление железных и стальных никелированных изделий объясняется присутствием электролита, остающегося в тонких порах никелевой пленки. Это явление устраняется, если изделия перед никелировкой выдержать в масле при 200°С, по охлаждении обезжирить, слабо омеднить, затем отникелировать в лимоннокислой никелевой ванне слабым током и наконец просушить в шкафу при 200°С; тогда влага удаляется из пор, которые закупориваются находящимся в них маслом.

Имеется ряд предложений накладывать двойные защитные пленки по литому железу, железным или стальным листам, проволокам и полосам в порядке обратном вышеуказанному, т. е. сначала покрывать изделия тонкой пленкой никеля контактным или электролитическим способом, а затем уже погружать в ванну с расплавленным цинком или оловом (Вивиен и Лефебр, 1860 г.). Предложено также добавлять некоторое количество никеля в сплав из 25-28 кг цинка, 47-49 кг свинца и 15 кг олова, служащий для покрытия железных листов горячим способом. Стойкость поверхностей алюминия и его сплавов против соли и морской воды м. б. достигнута гальваническим осаждением на них, после очистки их песчаною струей, последовательных слоев: никеля толщиною в 6 мкм, меди в 20 мкм и затем снова никеля в 50 мкм, после чего поверхность полируется. Стойкость алюминия против 15%- ной натровой щелочи достигается никелевой пленкой в 40 мкм толщиною. В некоторых случаях применяется покрытие не чистым никелем, а сплавом, например никелево-медным; для этого электролиз ведется в ванне, содержащей катионы в соотношении требуемого сплава; осажденная пленка затем переводится в сплав нагреванием изделия до краснокалильного жара.

Контактное никелирование . Стальные предметы, согласно указанию Ф. Штольба (1876 г.), после полировки и надлежащего обезжиривания кипятятся в ванне из 10-15%-ного водного раствора чистого хлористого цинка, к которому добавлено сернокислого никеля до образования зеленой мути от основной никелевой соли. Никелирование длится около 1ч. После этого предмет прополаскивается в воде с мелом, а ванна, после фильтрации и добавки никелевой соли, может применяться вновь. Получающаяся пленка никеля тонка, но держится прочно. Для повышения температуры ванны предложено или вести процесс под давлением (Ф. Штольба,. 1880 г.) или применять ванну с концентрированным раствором хлористого цинка. Во избежание ржавления предметов их выдерживают в течение 12 ч. в известковом молоке. Более сложная ванна для железных предметов, предварительно омедненных в ванне из 250 г сернокислой меди в 23 л воды с несколькими каплями серной кислоты, содержит 20 г винного камня, 10 г нашатыря, 5 г хлористого натрия, 20 г хлорного олова, 30 г сернокислого никеля и 50 г двойной сернокислой никелево-аммониевой соли.

Гальваническое никелирование . Обеднение никелевой ванны м. б. предупреждаемо достаточно легким растворением никелевых анодов. Вальцованные, и в особенности из чистого никеля, аноды растворяются трудно и потому при техническом никелировании пользуются в качестве анодов никелевыми брусками, содержащими до 10% железа. Однако такие аноды ведут к осаждению на предмете железа, а наличие железа в никелевой пленке влечет за собой целый ряд пороков никелирования. Как указано Калгане и Гаммоге (1908 г.), невозможно получить при анодах с железом осадок, вполне свободный от последнего. Но осадок никеля будет содержать уже только 0,10-0,14% железа, если в анодах содержание железа снижено до 7,5%; содержание железа в осадке можно еще уменьшить, заключая аноды в тканевые мешки, тогда как вращение электродов ведет к повышенному содержанию железа в осадке и к снижению его выхода. Присутствие железа в никелевой пленке ведет к отложению осадков с постепенно понижающимся содержанием железа и потому неоднородных в отношении механических свойств на различной глубине; К. Энгеман (1911 г.) считает эту неоднородность единственной причиной легкой отщепляемости никелевых пленок. Наличие железа м. б. причиною ряда других пороков никелирования (см. табл.), например, легкости ржавления пленок.

Порок Причина возникновения Мера борьбы
Осаждение никеля не происходит, газообразования нет Источник тока не работает Проверка и возобновление источника энергии
Провода приключены неправильно Переключение проводов
Ванна слишком холодна Нагрев ванны до температуры выше 15°С
Ванна слишком кисла Подливается водный раствор нашатырного спирта или водная взвесь углекислого никеля при непрерывном помешивании и частом испытании на конго-бумагу
Ванна содержит цинк Ванна делается щелочной посредством углекислого никеля, размешивается в течение нескольких часов, фильтруется и подкисляется 10%-ной серной кислотой
Неполное покрытие предмета никелевой пленкой Недостаточный ток Предметы подвешиваются на равных расстояниях от анодов, ванна подогревается не менее как до 20°С
Очень глубокие вогнутости поверхности предмета Устанавливаются небольшие вспомогательные аноды, вводимые в углубления предмета
Щелочность ванны Осторожное подкисление ванны 10%-ной серной кислотой при помешивании и постоянном испытании лакмусовой бумагой
Легкая отщепляемость белой или же желто-никелевой пленки при полировке Загрязненность поверхности предметов окислами и жиром Дополнительная очистка поверхности предметов
Слишком большое напряжение (выше 4 V ) Увеличивают число никелируемых предметов или снижают напряжение до 2,5-3 V
Слишком большая кислотность ванны Нейтрализация нашатырным спиртом или водной взвесью углекислого никеля
Бедность ванны никелем Удаление части электролита и добавка никелевой соли, пока ванна не станет нормального зеленого цвета
Несоответственные вязкость и поверхностное натяжение ванны Добавка глицерина или амилового спирта, или растительных отваров, или других коллоидов
Выделение водородных ионов Добавка окислителей или поглотителей водорода; применение несимметричного переменного тока
Несоответственная подготовка поверхности предметов Сообщение поверхностям шероховатости, механически или химически, покрытие их тонким слоем никеля из горячего раствора хлористого никеля или холодного концентрированного раствора этило-сернокислого никеля
Отставание никелевой пленки или разрыв ее при изгибе и растяжении предметов Присутствие капиллярных прослоек электролита Просушка и нагрев предметов до 250-270°С
Недостаточная обрабатываемость листов, покрытых толстым слоем никеля Вероятно та же Промывка, просушка без доступа воздуха и наконец, нагрев до слабого краснокалильного жара
Поверхность в ямочках и пленка пронизана бесчисленными порами Пыль и частички волокон, плавающие в ванне Ванну кипятят, фильтруют и устанавливают в ней правильную реакцию
Образование газовых пузырьков Постукивание по токоведущему стержню. Пузырьки удаляют; устанавливают слабокислую реакцию
Грубость и неровность поверхности Выделение водорода Введение связывающего водород свободного хлора в газообразном виде временами пропускаемой струей или в водном растворе; с несколько меньшим успехом хлор м. б. заменен бромом; весьма рекомендуется добавление раствора хлористого кобальта
Недостаточная гибкость пленки Высокое сопротивление ванны Добавка соли натрия
Желтизна пленки; поверхность становится матовой, а затем получает желтый и тёмно-жёлтый цвет Наличие примесей железа в ванне, содержание которых повышается в старых ваннах Избегать старых ванн, не слишком двигать ванны, работать со слабыми токами
Чернота пленка, темные полосы в местах отставания при правильной плотности тока Содержание в ванне посторонних металлов (до 1%) Удаление посторонних металлов

Недостаток проводящих солей

Добавление проводящих солей в количестве 2-3 кг на 100 л ванны: нашатырь, хлористый калий и хлористый натрий дают повышение проводимости на 84,31 и 18% соответственно
Бедность ванны солью никеля Добавка никелевой соли
Загар поверхности Слишком большая проводимость ванны из-за чрезмерной крепости ее Контроль концентрации ванны (например, постоянства плотности в 5° Вẻ) и плотности тока
Образование полос Загрязнения, производимые полировальным кругом в небольших углублениях Устранение затруднительно; достигается до известной степени мгновенным погружением в котел со щелоком или механической протиркой предметов
Изменения концентрации и возникновение потоков жидкости Уменьшение плотности тока и повышение температуры ванны
Образование пятен Недостаточная очистка готовых отникелированных изделий Тщательная промывка в проточной воде изделий после никелирования, затем погружение в кипящую вполне чистую воду, отряхивание изделий и просушка в нагретых опилках
Непрочное приставание никелевой пленки к железу Наличие ржавчины Тщательное освобождение от ржавчины. Гальваническое нанесение промежуточного слоя из цианкалиевой ванны, после чего пленка утолщается в кислой ванне

Электролитическая ванна для никелирования составляется гл. образом из двойной никелево-аммониевой соли, причем для устранения основных солей добавляют слабые кислоты. Большая кислотность ванны ведет к более твердым пленкам. Необходимо иметь в виду, что технический никелевый купорос не пригоден для ванн, т. к. часто содержит медь; ее следует удалить пропусканием сероводорода через водный раствор купороса. Применяются также хлористые соли, но при сульфатных ваннах осадки тверже, белее и более стойки, чем при хлоридных. Высокое сопротивление никелевой ванны выгодно снижать добавкой различных проводящих солей - особенно нашатыря и хлористого натрия - и нагреванием. Нейтрализация избыточной серной кислоты в старых растворах успешно производится углекислым никелем, который получается из теплого водного раствора сернокислого никеля, осаждаемого содой. Для белизны и гладкости пленок сделано большое количество предложений добавлять к никелевой ванне различные органические кислоты (винную, лимонную и т. д.) и их соли, например, уксусно-, лимонно- и виннокислые соли щелочных и щелочноземельных металлов (Кейт, 1878 г.), пропионовокислый никель, борно-виннокислые соли щелочных металлов. При необходимости получить толстые никелевые осадки предложено добавление борной, бензойной, салициловой, галловой или пирогалловой кислот, и кроме того 10 капель серной, муравьиной, молочной кислоты на 1 л ванны, чтобы предупредить поляризацию на изделии. Как указал Пауелл (1881 г.), прибавка бензойной кислоты (31 г на ванну из 124 г сернокислого никеля и 93 г лимоннокислого никеля в 4,5 л воды) избавляет от необходимости пользоваться химически чистыми солями и кислотами. Осадок никеля имеет хорошие свойства также и при простой ванне из никелево-аммонийного сульфата, но при условии щелочности раствора, что достигается добавкой аммиака. Весьма хорошие осадки получаются из нейтрального раствора фтористо-борнокислого никеля при комнатной температуре (при температуре выше 35°С раствор разлагается с образованием нерастворимой основной соли) и плотности тока 1,1-1,65 А/дм 2 . Приводим несколько рецептов ванн. 1) 50 ч. бисульфита натрия, 4 ч. азотнокислого окисного никеля и 4 ч. концентрированного нашатырного спирта растворяют в 150 ч. воды. 2) 10-12 ч. сернокислого никеля, 4 ч. двойной никелево-аммониевой сернокислой соли, 1-3 ч. борной кислоты, 2 ч. хлористого магния, 0,2-0,3 ч. лимоннокислого аммония, доливается до 100 ч. (всего) воды. Ток плотностью 1,6 А/дм 2 отлагает пленку со скоростью 2 мкм/ч.; повышая температуру до 70°С, можно снизить сопротивление ванны в два-три раза и тем ускорить никелирование. 3) Электролит из 72 г двойной никелево-аммониевой сернокислой соли, 8 г сернокислого никеля, 48 г борной кислоты и 1 л воды особенно благоприятен для мягкости и непористости осадка, т. к. снижает выделение водорода.

Получение никелевых пленок особого вида . 1) Белая пленка по цинку, олову, свинцу и британия-металлу получается в ванне из 20 г двойной никелево-аммониевой сернокислой соли и 20 г углекислого никеля, растворенных в 1 л кипящей воды, и нейтрализованной при 40°С уксусной кислотою; ванна должна поддерживаться нейтральной. 2) Матово-белая пленка получается в ванне из 60 г двойной никелево-аммониевой сернокислой соли, 15 г перекристаллизованного сернокислого никеля, 7,4 г нашатыря, 23 г хлористого натрия и 15 г борной кислоты на 1 л воды; ванна д. б концентрирована до 10° Вẻ; напряжение от 2 до 2,5 V. 3) Черная пленка получается на поверхностях, тщательно обезжиренных или покрытых тонким слоем белого никеля путем электролиза в ванне из 60 г двойной никелево-аммониевой сернокислой соли, 1,5 г роданистого аммония и около 1 г сернокислого цинка на 1 л воды 4) Черная пленка получается также в электролите из 9 г двойной никелево-аммониевой сернокислой соли в 1 л воды с последующей добавкой 22 г роданистого калия, 15 г углекислой меди и 15 г белого мышьяка, предварительно растворенного в углекислом аммонии; глубина черного тона вырастает с содержанием в растворе мышьяка. 5) Глубоко синяя пленка получается в ванне из равных частей двойной и простой сернокислых солей никеля, доведенной до 12° Bẻ, причем на литр добавляют 2 ч. аммиачного отвара лакричного корня; электролиз длится 1 час при 3,5 V, а затем еще 1/2 часа при 1,4 V. 6) Коричневая пленка получается так: электролиз при напряжении 0,75-1 V ведется в ванне из 180 г двойной никелево-аммониевой сернокислой соли и 60 г сернокислого никеля, растворенных в возможно малом количестве кипящей воды, добавленной до 50 см 3 и смешанной затем с растворами 30 г сернокислого никеля и 60 г роданистого натрия, каждый в 0,5 л воды, после чего добавляют раствор до 4,5 л. Полученной пленке черного цвета придают коричневый оттенок, погружая изделие на несколько секунд в ванну из 100,6 г перхлората железа и 7,4 г соляной кислоты в 1 л воды: после промывки и просушки поверхность изделия для закрепления тона лакируют.

Никелирование алюминия и его сплавов . Предложено несколько процессов. 1) Подготовка поверхности алюминиевых изделий состоит в обезжиривании, затем очистке пемзой и наконец погружении в 3%-ный водный раствор цианистого калия; после электролиза в никелевой ванне изделия промываются холодной водой. 2) После промывки 2%-ным раствором цианистого калия изделия погружаются в раствор из 1 г хлористого железа (феррохлорид) на 0,5 л воды и технической соляной кислоты, пока поверхность не станет серебряно-белой, и затем никелируются в течение 5 мин. при напряжении 3 V. 3) Полировка изделий, удаление полировочного состава бензином, выдержка в течение нескольких минут в теплом водном растворе фосфорнокислого натрия, соды и смолы, промывка, погружение на короткое время в смесь из равных частей 66%-ной серной кислоты (содержащей несколько хлористого железа) и 38%-ной азотной кислоты, новая промывка и электролиз в ванне, содержащей никелевую соль, горькую соль и борную кислоту; напряжение 3-3,25 V. 4) По Ж. Канаку и Э. Тассилли: протравка изделия кипящей калиевой щелочью, чистка щеткой в известковом молоке, 0,2%-ная цианкалиевая ванна, ванна из 1 г железа в 500 г соляной кислоты и 500 г воды, промывка, никелирование в ванне из 1 л воды, 500 г хлористого никеля и 20 г борной кислоты при напряжении 2,5 V и плотности тока 1 А/дм 2 , наконец полировка матово-серого осадка. Железная ванна служит для огрубления поверхности алюминия и тем содействует прочности, с какою удерживается пленка на металле. 5) По Фишеру, ванна для никелирования составляется из 50 г сернокислого никеля и 30 г нашатыря в 1 л воды при плотности тока 0,1-0,15 А/дм 2 , за 2-3 часа получается толстый осадок, который обладает высоким блеском после полировки стеариновым маслом и венской известью. 6) Горячая ванна (60°С) составляется из 3400 г двойной никелево-аммониевой сернокислой соли, 1100 г сернокислого аммония и 135 г молочного сахара в 27 л воды. 7) Холодная ванна содержит азотнокислый никель, цианистый калий и фосфорнокислый аммоний.

Контроль никелевой пленки . Распознавание состава металлической пленки на предмете, по Л. Ловитону (1886 г.), может производиться посредством нагревания предмета в наружном пламени бунзеновской горелки: никелевая пленка синеет, получает черный отблеск и сохраняется невредимою; серебро не изменяется в пламени, но чернеет при обработке разбавленным раствором сернистого аммония; наконец оловянное покрытие быстро становится от серо-желтого до серого и исчезает при обработке указанным реагентом. Проверка качества никелевой пленки на железе и меди в отношении пор и изъянов может производиться при помощи т. н. ферроксилового испытания и с особым удобством при помощи ферроксиловой бумаги, покрытой гелем агар-агара с железисто-синеродистым калием и хлористым натрием. Наложенная в смоченном виде на испытуемую поверхность и по прошествии 3-5 мин. закрепленная в воде, эта бумага дает документальное изображение малейших пор, которое м. б. сохраняемо.

Регенерация никеля со старых изделий . Удаление никелевого покрытия с изделий из железа и других неамальгамируемых металлов производится следующими способами: а) парами ртути под вакуумом или под обыкновенным давлением; б) нагреванием обрезков с серой, после чего слой металла легко удаляется молотками; в) нагреванием обрезков с веществами, отдающими серу при высокой температуре) при внезапном охлаждении пленка никеля соскакивает; г) обработкой нагретой до 50-60°С серной или азотной кислотой; железо переходит в раствор, и никель остается почти нерастворенным; однако несмотря на свою простоту этот способ мало применим, т. к. полученный никель сохраняет еще значительное содержание железа, не удаляемое и при повторной обработке кислотою (Т. Флейтман); д) длительным нагреванием при доступе воздуха или водяного пара, после чего обрезки подвергаются механическим ударам и никель отскакивает; е) электролитическим растворением: железный покрываемый никелем предмет делают анодом в ванне, содержащей углекислый аммоний; если покрытие состоит из сплава никеля, то необходимо регулировать напряжение, причем при 0,5 V осаждается медь, а при напряжении большем 2 V - никель; при этом процессе железо не разъедается; ж) железные или стальные обрезки делают анодом в ванне из водного раствора натриевой селитры, тогда как катод состоит из угольной палки; напряжение не должно превосходить 20 V; з) с цинковых кружек никель удаляется электролизом предметов, сделанных анодом в 50°-ной серной кислоте; кислота этой концентрации обладает свойством растворять только никель, серебро и золото, но не другие металлы, если идет ток; напряжение применяется 2-5 V; в качестве катодов служат железные листы, на которых никель осаждается в виде пыли; цинк не растворяется, хотя бы кружки и оставались в электролите долгое время.

Покрывая никелем детали из цветных металлов и стали, повышают их сопротивление воздействию коррозионных процессов и механического износа. Никелирование в домашних условиях доступно каждому и характеризуется несложной технологией.

1 Никелирование металлических поверхностей – азы технологии

Никелирование заключается в нанесении на поверхность обрабатываемого изделия тонкого никелевого покрытия, толщина которого, как правило, составляет 1–50 мкм. Этой операции детали подвергают с целью их защиты или для получения характерного (матово-черного или блестящего) внешнего вида никелируемой поверхности. Покрытие, независимо от оттенка, надежно предохраняет металлические предметы от коррозии на открытом воздухе, в растворах солей, щелочей, слабых органических кислот.

Как правило, никелируют детали, изготовленные из стали или таких металлов и сплавов из них, как медь, алюминий, цинк, реже – титан, марганец, молибден, вольфрам. Нельзя обрабатывать химическим никелированием поверхности изделий из свинца, олова, кадмия, висмута, сурьмы. Никелевые покрытия используют в различных промышленных отраслях для защитно-декоративных и специальных целей или в качестве подслоя.

Эту технологию применяют при восстановлении поверхности изношенных деталей различных механизмов и автомобилей, покрытия измерительного и медицинского инструментов, предметов и изделий домашнего обихода, химической аппаратуры, деталей, эксплуатируемых под незначительными нагрузками в условиях воздействия крепких растворов щелочей или сухого трения. Существует 2 метода нанесения покрытий из никеля – электролитический и химический.

Второй несколько дороже, чем первый, однако позволяет получать равномерное по толщине и качеству покрытие на всей поверхности детали, при условии, если обеспечен доступ раствора ко всем ее участкам. Никелирование в домашних условиях является вполне осуществимой задачей. Перед началом работ изделие тщательно очищают от загрязнений и ржавчины (если есть), обрабатывают мелкой наждачной бумагой, чтобы снять оксидную пленку, промывают водой, затем обезжиривают и еще раз промывают.

2 Секреты увеличения стойкости и срока службы никелевых покрытий

Перед никелированием стали желательно выполнять меднение изделия (покрывать подслоем меди). Эта технология используется в промышленности, как отдельный процесс, а также как подготовительный перед серебрением, хромированием, никелированием. Меднение, предваряющее нанесение других слоев, позволяет выровнять дефекты поверхности и обеспечивает надежность и долговечность внешнего защитного покрытия. Медь держится на стали очень прочно, а другие металлы осаждаются на нее гораздо лучше, чем на чистую сталь. Помимо этого, никелевые покрытия не сплошные и на 1 см2 имеют сквозные (до металла подложки) поры:

  • несколько десятков – для однослойных покрытий никелем;
  • несколько – для трехслойных.

В результате этого коррозионным процессам подвергается металл подложки, находящийся под никелем, при этом возникают условия, провоцирующие отслаивание защитного покрытия. Поэтому, даже при предварительном омеднении, многослойном никелировании, а особенно при однослойном на чистую сталь, необходима обработка поверхности защитного покрытия из никеля специальными составами, которые закрывают поры. При самостоятельной обработке в домашних условиях возможны следующие способы:

  • протереть деталь с покрытием кашицеобразной смесью воды с окисью магния и сразу же погрузить ее на 1–2 минуты в 50 % состав соляной кислоты;
  • протереть 2–3 раза поверхность детали легко проникающим смазочным составом;
  • сразу после обработки еще не остывшее изделие погрузить в рыбий жир (невитаминизированный, лучше старый, который уже непригоден по прямому назначению).

В двух последних случаях излишки смазки (жира) удаляют с поверхности через сутки бензином. В случае обработки больших поверхностей (молдингов, бамперов автомашин) рыбий жир используют следующим образом. В жаркую погоду им протирают деталь 2 раза с промежутком в 12–14 часов, а через 2 суток удаляют излишки бензином.

3 Электролитическое никелирование в домашних условиях

Этот способ требует подготовки электролита, состав которого следующий:

  • 140 г сернокислого никеля;
  • 50 г сернокислого натрия;
  • 30 г сернокислого магния;
  • 5 г поваренной соли (хлористого натрия);
  • 20 г борной кислоты;
  • 1000 г воды.

Химикаты растворяют по отдельности в воде, полученные растворы фильтруют, после чего смешивают. Готовый электролит наливают в емкость. Для гальванического никелирования необходимы электроды из никеля (аноды), которые опускают в ванну с электролитом (одного электрода недостаточно, так как полученное покрытие будет неравномерным). Между анодами на проволочке подвешивают деталь. Медные проводники, идущие от никелевых пластин, соединяют в одну цепь и подключают к положительному выводу источника постоянного тока, провод от детали – к отрицательному.

Для управления силой тока в цепь включают сопротивление (реостат) и миллиамперметр (прибор). Напряжение источника тока должно быть не больше 6 В, плотность тока необходимо поддерживать на уровне 0,8–1,2 А/дм2 (площади поверхности изделия), температура электролита комнатная 18–25 оC. Ток подают 20–30 минут. За это время образуется никелевый слой толщиной примерно 1 мкм. Затем деталь вынимают, как следует промывают водой и просушивают. Полученное покрытие будет серовато-матового цвета. Чтобы слой никеля приобрел блеск, поверхность детали полируют.

Если нет сернокислого натрия и магния, то берут больше сернокислого никеля, доводя его количество в электролите до 250 г, а также борной кислоты – 30 г, натрия хлористого – 25 г. Никелирование в этом случае проводят при значениях плотности тока в пределах 3–5 А/дм2, раствор нагревают до 50–60 оC.

Недостатки электролитического метода:

  • на рельефных, неровных поверхностях никель осаждается неравномерно;
  • невозможность нанесения покрытия в глубоких и узких полостях, отверстиях и тому подобного.

4 Химическое никелирование изделий в домашних условиях

Все составы для проведения химического никелирования универсальны – пригодны для обработки любых металлов. Готовят растворы, соблюдая определенную последовательность. В воде растворяют все химреактивы (исключая гипофосфит натрия). Посуда должна быть эмалированная. Затем раствор нагревают, доводя его температуру до рабочей, после чего растворяют гипофосфит натрия. Деталь завешивают в жидком составе, температуру которого поддерживают на необходимом уровне. В 1 л подготовленного раствора возможно провести никелирование изделия, площадь поверхности которого до 2 дм2.

Используют следующие составы растворов, г/л:

  • Натрий янтарно-кислый – 15, никель хлористый – 25, натрия гипофосфит – 30 (кислотность раствора pH – 5,5). Рабочая температура смеси – 90–92 °С, скорость наращивания покрытия – 18–25 мкм/ч.
  • Никель сернокислый – 25, натрий янтарно-кислый – 15, натрия гипофосфит – 30 (pH – 4,5). Температура – 90 °С, скорость – 15–20 мкм/ч.
  • Никель хлористый – 30, кислота гликолевая – 39, натрия гипофосфит – 10 (рН – 4,2). 85–89 °С, 15–20 мкм/ч.
  • Никель сернокислый – 21, натрий уксуснокислый – 10, свинца сульфид – 20, натрия гипофосфит – 24 (pH – 5). 90 °С, до 90 мкм/ч.
  • Никель хлористый – 21, натрий уксуснокислый – 10, натрия гипофосфит – 24 (pH – 5,2). 97 °С, до 60 мкм/ч.
  • Никель хлористый – 30, кислота уксусная – 15, свинца сульфид – 10–15, натрия гипофосфит – 15 (pH – 4,5). 85–87 °С, 12–15 мкм/ч.
  • Никель хлористый – 30, аммоний хлористый – 30, натрий янтарно-кислый – 100, аммиак (25 % раствор) – 35, натрия гипофосфит – 25 (pH – 8–8,5). 90 °С, 8–12 мкм/ч.
  • Никель хлористый – 45, аммоний хлористый – 45, натрий лимоннокислый – 45, натрия гипофосфит – 20 (pH – 8,5). 90°С, 18–20 мкм/ч.
  • Никель сернокислый – 30, аммоний сернокислый – 30, натрия гипофосфит – 10 (pH – 8,2–8,5). 85 °С, 15–18 мкм/ч.
  • Никель хлористый – 45, аммоний хлористый – 45, натрий уксуснокислый – 45, натрия гипофосфит – 20 (pH – 8–9). 88–90 °С, 18–20 мкм/ч.

По истечении нужного времени изделие промывают в воде, содержащей небольшое количество распущенного мела, затем просушивают и полируют. Полученное таким способом покрытие сталь и железо держат достаточно прочно.

В основе химического процесса никелирования лежит реакция, при которой никель восстанавливается из раствора солей на его основе в присутствии гипофосфита натрия и при помощи остальных химических реактивов. Применяемые составы делят на щелочные (уровень pH превышает 6,5) и кислые (показатель рН составляет 4–6,5). Последние лучше использовать для обработки черных металлов, меди, латуни, а щелочные предназначены для никелирования .

Использование кислых составов позволяет получать на полированном изделии более гладкую, равномерную поверхность, чем с помощью щелочных. У кислых растворов есть и другая немаловажная особенность – вероятность их саморазряда при превышении значений рабочей температуры меньше, чем у щелочных. Никелирование, своими руками выполненное, с использованием щелочных составов гарантирует более прочное и надежное сцепление слоя никеля с металлом, на который произведено его нанесение.

Никелирование применяется в машиностроении, приборостроении н других отраслях промышленности. Никелем покрывают детали из стали и цветных металлов для защиты их от коррозии, декоративной отделки, повышения сопротивления механическому износу. Благодаря высокой коррозионной стойкости в растворах щелочей никелевые покрытия применяют для защиты химических аппаратов от щелочных растворов. В пищевой промышленности никель может заменять оловянные покрытия. В оптической промышленности получил распространение процесс черного никелирования
При электрохимическом осаждении никеля на катоде протекают два основных процесса: Ni 2+ + 2e - → Ni и 2Н + + 2е - → Н 2 .
В результате разряда ионов водорода концентрация их в прикатодном слое снижается, т. е. электролит защелачивается. При этом могут образовываться основные соли никеля, которые влияют на структуру н механические свойства никелевого покрытия. Выделение водорода вызывает также питтинг - явление, при котором пузырьки водорода, задерживаясь на поверхности катода, препятствуют разряду ионов никеля в этих местах. На покрытии образуются ямки и осадок теряет декоративный вид. В борьбе с питтингом применяют вещества, которые снижают поверхностное натяжение на границе металл - раствор.
При анодном растворении никель легко пассивируется. При пассивации анодов в электролите уменьшается концентрация ионов никеля и быстро растет концентрация ионов водорода, что приводит к падению выхода по току и ухудшению качества осадков. Для предупреждения пассивирования анодов в электролиты никелирования вводят активаторы. Такими активаторами являются ионы хлора, которые вводят в электролит в виде хлористого никеля или хлористого натрия.

Будьте внимательны! Компания «ЛВ-Инжиниринг» не предоставляет услуги по нанесению гальванических покрытий! Наша организация осуществляет проектирование гальванических производств, изготовление гальванических ванн и линий из полипропилена, монтаж и пусконаладочные работы по данному направлению.

Сернокислые электролиты никелирования

Сернокислые электролиты никелирования получили наибольшее распространение. Эти электролиты устойчивы в работе, при правильной эксплуатации они могут использоваться в течение нескольких лет без замены. Состав некоторых электролитов и режимы никелирования:

Состав Электролит №1 Электролит №2 Электролит №3
Никель сернокислый 280-300 400-420
Натрий сернокислый 50-70 - -
Магний сернокислый 30-50 50-60 -
Кислота борная 25-30 25-40 25-40
Натрий хлористый 5-10 5-10 -
Натрий фтористый - - 2-3
Температура, °C 15-25 30-40 50-60
Плотность тока. А/дм 2 0,5-0,8 2-4 5-10
pH 5,0-5,5 3-5 2-3

Сернокислый натрий и сернокислый магний вводят в электролит для повышения электропроводности раствора. Проводимость растворов натрия выше, но в присутствии сернокислого магния получаются более светлые, мягкие и легко полируемые осадки.
Никелевый электролит очень чувствителен даже к небольшим изменениям кислотности. Для поддержания величины рН в требуемых пределах необходимо применять буферные соединения. В качестве такого соединения, препятствующего быстрому изменению кислотности электролита, применяют борную кислоту.
Для облегчения растворения анодов в ванну вводят хлористые соли натрия.
Для приготовления сернокислых электролитов никелирования необходимо растворить в отдельных емкостях в горячей воде все компоненты. После отстаивания растворы фильтруют в рабочую ванну. Растворы перемешивают, проверяют рН электролита и при необходимости корректируют 3%-ным раствором едкого натра или 5%-иым раствором серной кислоты. Затем электролит доводят водой до требуемого объема. При наличии примесей необходимо перед началом эксплуатации электролита произвести его проработку, так как никелевые электролиты чрезвычайно чувствительны к посторонним примесям как органическим, так и неорганическим.
Дефекты при эксплуатации электролита блестящего никелирования и способы их устранения приведены в Таблице 1.

Таблица 1. Дефекты при эксплуатации сернокислых электролитов никелирования и способы их устранения

Дефект Причина дефекта Способ устранения
Никель не осаждается. Обильное выделение водорода Низкое значение рН Откорректировать рН 3%-иым раствором едкого натра
Частичное покрытие никелем Плохое обезжиривание деталей Улучшить подготовку
Неправильное расположение анодов Равномерно распределить аноды
Детали взаимно экранируют друг друга Изменить расположение деталей в ванне
Покрытие имеет серый цвет Наличие в электролите солей меди Очистить электролит от меди
Хрупкое, растрескивающееся покрытие Обработать электролит активированным углем и проработать током
Наличие примесей железа Очистить электролит от железа
Низкое значение рН Откорректировать рН
Образование питтинга Загрязнение электролита органическими соединениями Проработать электролит
Низкое назначение рН Откорректировать рН
Слабое перемешивание Усилить перемешивание
Появление черных или коричневых полос на покрытии Наличие примесей цинка Очистить электролит от цинка
Образование дендритов на кромках деталей Высокая плотность тока Снизить плотность тока
Чрезмерно продолжительный процесс никелирования Ввести промежуточный подслой меди или уменьшить время электролиза
Аноды покрыты коричневой или черной пленкой Высокая анодная плотность тока Увеличить поверхность анодов
Малая концентрация хлористого натрия Добавить 2-3 г/л хлористого натрия

При никелировании применяют горячекатаные аноды, а также непассивирующиеся аноды. Применяют также аноды в форме пластинок (карточек), которые загружают в зачехленные титановые корзины. Карточные аноды способствуют равномерному растворению никеля. Во избежание загрязнения электролита анодным шламом никелевые аноды следует заключать в чехлы из ткани, которые предварительно обрабатывают 2-10%-ным раствором соляной кислоты.
Отношение анодной поверхности к катодной при электролизе 2: 1.
Никелирование мелких деталей осуществляют в колокольных и барабанных ваннах. При никелировании в колокольных ваннах применяют повышенное содержание хлористых солей в электролите для предотвращения пассивации анодов, которая может возникать из-за несоответствия поверхности анодов и катодов, вследствие чего концентрация никеля в электролите понижается и уменьшается значение рН. Оно может достигнуть таких пределов, при которых вообще прекращается осаждение никеля. Недостатком при работе в колоколах и барабанах является также большой унос электролита с деталями из ванн. Удельные нормы потерь при этом составляют от 220 до 370 мл/м 2 .


Электролиты блестящего никелирования

Для защитно-декоративной отделки деталей широко применяют блестящие и зеркальные никелевые покрытия, получаемые непосредственно из электролитов с блескообразующими добавками. Состав электролита и режим никелирования:

Никель сернокислый - 280-300 г/л
Никель хлористый - 50-60 г/л
Кислота борная - 25-40 г/л
Сахарин 1-2 г/л
1,4-бутиндиол - 0,15-0,18 мл/л
Фталимид 0,02-0,04 г/л
рН = 4-4,8
Температура = 50-60°С
Плотность тока = 3-8 А/дм 2

Для получения блестящих никелевых покрытий используют также электролиты с другими блескообразующими добавками: хлорамина Б, пропаргилового спирта, бензосульфамида и др.
При нанесении блестящего покрытия необходимо интенсивное перемешивание электролита сжатым воздухом желательно в сочетании с качанием катодных штанг, а также непрерывная фильтрация электролита,
Электролит приготовляют следующим образом. В дистиллированной или деионизированной горячей (80-90°С) воде растворяют при перемешивании сернокислый и хлористый никель, борную кислоту. Доведенный водой до рабочего объема электролит подвергают химической и селективной очистке. Для удаления меди и цинка электролит подкисляют серной кислотой до рН 2-3 завешивают катоды большой площади из рифленой стали и прорабатывают электролит в течение суток при температуре 50-60°С, перемешивая сжатым воздухом. Плотность тока 0,1-0,3 А/дм 2 . Затем рН раствора доводят до 5,0-5,5, после чего в него вводят перманганат калия (2 г/л) или 30%-ный раствор перекиси водорода (2 мл/л).
Раствор перемешивается в течение 30 мин, добавляют 3 г/л активированного угля, обработанного серной кислотой, и перемешивают электролит 3-4 с помощью сжатого воздуха. Раствор отстаивается 7-12 ч, затем фильтруется в рабочую ванну.
В очищенный электролит вводят блескообразователи: сахарин и 1,4-бутиндиол непосредственно, фталимид - предварительно растворив в небольшом количестве электролита, подогретого до 70-80° С. Доводят рН до требуемого значения и приступают к работе. Расход блескообразователей при корректировании электролита составляет: сахарин 0,01-0,012 г/(А.ч); 1,4-бутнндиол (35%-ный раствор) 0,7-0,8 мл/(А.ч); фталимид 0,003-0,005 г/(А.ч).
Дефекты при эксплуатации электролита блестящего никелирования и способы их устранения приведены в Таблице 2.

Таблица 2. Дефекты при эксплуатации электролита блестящего никелирования и способы их устранения

Дефект Причина дефекта Способ устранения

Недостаточный блеск покрытия

Мала концентрация блескообразователей Ввести блескообразователи
Не выдерживается заданная плотность тока и рН Отрегулировать плотность тока и рН

Темный цвет покрытия и/или темные пятна

В электролите имеются примеси тяжелых металлов Произвести селективную очистку электролита при низкой плотности тока
Питтинг Наличие в электролите примесей железа Очистить электролит и ввести антипиттинговую добавку
Недостаточное перемешивание Увеличить воздушное перемешивание
Низкая температура электролита Повысить температуру электролита
Хрупкие осадки Загрязнение электролита органическими соединениями Очистить электролит активированным углем
Пониженное содержание 1,4-бутиндиола Ввести добавку 1,4-бутиндиола

Никель широко применяется в машиностроении и приборостроении, а также в разных отраслях. В пищевой промышленности никель заменяет оловянные покрытия, а в области оптики он распространился благодаря процедуре чёрного никелирования металла. Никелем покрывают детали, изготовленные из цветных металлов и стали, для повышения сопротивления изделий механическому износу и защиты от коррозии. Присутствие фосфора в никеле делает пленку по твердости близкой к пленке хрома!

Процедура никелирования

Никелирование представляет собой нанесение на поверхность детали никелевого покрытия, которое обычно имеет толщину от 1 до 50 мкм. Покрытия никелем бывают блестящими или матовыми черными, но не зависимо от этого, обеспечивают надежную защиту металлу в агрессивных средах (кислоты, щелочи) и в условиях повышенной температуры.

Перед процессом никелирования изделие должно быть подготовлено. Его обрабатывают наждачной бумагой для удаления оксидной пленки, протирают щеткой, промывают водой, обезжиривают в горячем содовом растворе и промывают еще раз. Никелевые покрытия способны с течением времени терять свой первичный блеск, поэтому зачастую покрывают слой никеля более устойчивым слоем хрома.

Никель, который нанесен непосредственно на сталь, является катодным покрытием и защищает материал исключительно механическим путем. Несплошность защитного покрытия способствует возникновению коррозионных пар, в которых растворимым электродом выступает именно сталь. В результате этого под покрытием образуется коррозия, разрушающая стальную подложку и провоцирующая отслаивание никелевого покрытия. Для предупреждения этого металл всегда нужно покрывать толстым слоем никеля.

Никелевые покрытия можно наносить на железо, медь, их сплавы, а также на вольфрам, титан и прочие металлы. Нельзя покрывать с помощью химического никелирования такие металлы, как свинец, кадмий, олово, свинец, сурьму и висмут. При никелировании стальных изделий принято наносить подслой меди.

Покрытия никелем используют в разных отраслях промышленности для специальных, защитно-декоративных целей, а также в качестве подслоя. Технологию никелирования используют для восстановления изношенных автозапчастей и деталей машин, покрытия химической аппаратуры, медицинского инструмента, измерительных инструментов, предметов домашнего обихода, деталей, что эксплуатируются с небольшими нагрузками в условии сухого трения или воздействия крепких щелочей.

Виды никелирования

Практике известны две разновидности никелирования - электролитическое и химическое. Последний способ является несколько дороже электролитического, однако способен обеспечить возможность создания равномерного по качеству и толщине покрытия на любых участках поверхности, если выполнено условие доступа к ним раствора.

Электролитическое никелирование

Электролитические покрытия характеризуются некоторой пористостью, зависящей от тщательности подготовки основы и толщины защитного покрытия. Для организации качественной защиты от коррозии требуется полное отсутствие пор, для этого принято предварительно производить меднение детали из металла или наносить многослойное покрытие, что является надежнее однослойного даже при равной толщине.

Для этого нужно приготовить электролит. Возьмите 30 грамм сульфата никеля, 3,5 грамма хлорида никеля и 3 грамма борной кислоты на 100 миллилитров воды, данный электролит налейте в емкость. Для никелирования стали или меди требуются никелевые аноды, которые следует опустить в электролит.

Между никелевыми электродами следует подвесить на проволочке деталь. Проволочки, идущие от никелевых пластинок, необходимо соединить вместе. Детали подключают к отрицательному полюсу источнику тока, а проволочки - к положительному. Затем нужно включить реостат в цепь для регулировки тока и миллиамперметр. Выберите источник постоянного тока, который имеет напряжение не больше 6 В.

Ток необходимо включать приблизительно на двадцать минут. Затем деталь нужно вынуть, промыть и просушить. Изделие покрыто матовым слоем никеля сероватого цвета. Чтобы защитное покрытие приобрело блеск, его необходимо отполировать. Однако при работе помните о существенных недостатках электролитического никелирования в домашних условиях — неравномерности осаждения на рельефной поверхности никеля и невозможности покрытия глубоких и узких отверстий, а также полостей.

Химическое никелирование

Помимо электролитического способа можно использовать еще один, весьма несложный способ для покрытия железа или полированной стали тонким, но прочным слоем никеля. Принято брать 10-процентный раствор хлористого цинка и постепенно добавлять к раствору сернокислого никеля до тех пор, пока жидкость не станет ярко-зеленой. После этого жидкость нужно нагреть до кипения, лучше для этого использовать фарфоровый сосуд.

При этом появляется характерная муть, однако на процесс никелирования деталей она никакого влияния не оказывает. Когда вы доведете жидкость до кипения, следует в неё опустить предмет, который подлежит никелированию. Предварительно очистите деталь и обезжирьте. Изделие должно кипеть в растворе близко часа, время от времени добавляйте дистиллированную воду по мере ее выпаривания.

Если вы заметите во время кипения, что жидкость поменяла цвет из ярко-зеленого на слабо-зеленый, то нужно добавить немного сернокислого никеля для получения первоначального окраса. По истечении указанного времени достаньте изделие из раствора, промойте в воде, в которой распущено немного мела, и тщательно просушите. Сталь или полированное железо, покрытое подобным способом никелирования, это защитное покрытие держит весьма прочно.

В основе процедуры химического никелирования находится реакция восстановления никеля из водного раствора его солей при помощи гипофосфита натрия и прочих химических реактивов. Растворы, которые применяются для химического никелирования, бывают кислыми с уровнем рН 4-6,5 и щелочными с показателем рН выше 6,5.

Кислые растворы целесообразно использовать для покрытия черных металлов, латуни и меди. Щелочные предназначены для нержавеющих сталей. Кислый раствор по сравнению с щелочным дает на полированной детали более гладкую поверхность. Еще одной немаловажной особенностью кислых растворов считается меньшая вероятность саморазряда при превышении порога рабочей температуры. Щелочные растворы гарантируют более надежное сцепление пленки никеля с основным металлом.

Все водные растворы для никелирования своими руками являются универсальными, то есть пригодными для всех металлов. Для химического никелирования берут дистиллированную воду, однако вы можете использовать и конденсат из бытового холодильника. Химические реактивы подойдут чистые - с обозначением на этикетке «Ч».

Последовательность изготовления раствора такова. Все химические реактивы, за исключением гипофосфита натрия, нужно растворить в воде, используя эмалированную посуду. Потом разогрейте раствор до рабочей температуры, растворите гипофосфит натрия и поместите детали в раствор. С помощью одного литра раствора можно отникелировать детали, которые имеют площадь их поверхности до 2 дм2.

Черные покрытия

Никелевые покрытия черного цвета применяются со специальной и декоративной целью. Их защитные свойства являются очень низкими, поэтому их принято наносить на подслой из обычного никеля, цинка или кадмия. Стальные изделия нужно предварительно оцинковать, а медь и латунь — никелировать.

Черное никелевое покрытие является твердым, но хрупким, особенно при значительной толщине. В практике останавливаются на значении толщины в 2 мкм. Никелевая ванна для нанесения подобных покрытий, как правило, содержит большое количество роданида и цинка. В покрытии присутствует близко половины никеля, а остальные 50% составляют сера, азот, цинк и углерод.

Ванны черного никелирования алюминия или стали принято готовить, растворяя в теплой воде все составляющие и фильтруя с помощью фильтровальной бумаги. Если при растворении борной кислоты возникают трудности, то ее отдельно растворяют в воде, что нагрета до 70 градусов по Цельсию. Получение глубокого черного цвета зависит от правильного выбора значения плотности тока.

Ванны никелирования

В мастерских широко применяется ванна, которая состоит из 3 основных компонентов: борной кислоты, сульфата и хлорида. Сульфат никеля является источником ионов никеля. Хлорид значительно влияет на работу анодов из никеля, его концентрация в ванне точно не нормируется. В безхлоридных ваннах совершается сильное пассивирование никеля, после чего содержание в ванне никеля уменьшается, а результатом является снижение выхода по току и падение качества покрытий.

Аноды в присутствии хлоридов растворяются в достаточном количестве для нормального протекания процесса никелирования меди или алюминия. Хлориды увеличивают проводимость ванны и её функционирование при загрязнениях цинком. Борная кислота помогает поддерживать рН на определенном уровне. Эффективность подобного действия зависит в большой степени от концентрации борной кислоты.

В качестве хлорида можно использовать хлорид натрия, цинка или магния. Повсеместно применяются сульфатные ванны Уоттса, которые содержат в качестве добавки электропроводные соли, которые повышают электропроводность ванн и улучшают внешний вид защитных покрытий. Наиболее применяем среди этих солей сульфат магния (близко 30 грамм на литр).

Сульфат никеля принято чаще всего вводить в концентрации порядка 250—350 грамм на литр. В последнее время наметились тенденции к ограничению сульфата никеля - меньше 200 г/л, что помогает заметно снизить потери раствора.

Концентрация борной кислоты составляет 25—40 грамм на литр. Ниже 25 г/л увеличиваются тенденции к быстрому защелачиванию ванны. А превышение допустимого уровня считается неблагоприятным из-за возможной кристаллизации борной кислоты и оседания кристаллов на стенках никелевой ванны и анодах.

Никелевая ванна работает в разном диапазоне температур. Однако технология никелирования в домашних условиях редко применяется при комнатной температуре. От покрытий, которые нанесены в холодных ваннах, часто отслаивается никель, поэтому ванну необходимо нагревать хотя бы до 30 градусов по Цельсию. Плотность тока выбирают экспериментально, чтобы не происходил прижог покрытий.

Натриевая ванна надежно работает в широком диапазоне рН. Раньше поддерживали рН на уровне 5,4—5,8, мотивируя меньшей агрессивностью и высшими кроющими способностями ванны. Однако высокие значения рН провоцируют значительный рост напряжений в никелевом покрытии. Поэтому в большинстве ванн рН составляет 3,5—4,5.

Тонкости никелирования

Сцепление пленки никеля с металлом является сравнительно низким. Данную проблему можно решить с помощью термической обработки пленок никеля. Процедура низкотемпературной диффузии состоит в нагреве отникелированных изделий до температуры 400 градусов по Цельсию и выдержке деталей на протяжении одного часа при этой температуре.

Но помните, что если детали, которые покрыты никелем, были закалены (рыболовные крючки, ножи и пружины), то при температуре 400 градусов они могут отпуститься, теряя твердость - их основное качество. Поэтому низкотемпературную диффузию в подобной ситуации проводят при температуре близко 270-300 градусов с выдержкой до 3 часов. Подобная термообработка способна повышать и твердость покрытия никелем.

Современные ванны никеля требуют специального оборудования для никелирования и перемешивания водного раствора для интенсификации процедуры никелирования и уменьшения риска питтинга - возникновения небольших углублений в покрытии. Перемешивание ванны за собой влечет необходимость создания непрерывной фильтрации для устранения загрязнений.

Перемешивание при помощи подвижной катодной штанги не является настолько эффективным, как использование для этой цели сжатого воздуха, и помимо всего прочего, требует наличия специального ингредиента, который исключает пенообразование.

Снятие никелевого покрытия

Никелевые покрытия на стали принято удалять в ваннах с разбавленной серной кислотой. Добавьте к 20 литрам холодной воды порциями 30 литров концентрированной серной кислоты при постоянном перемешивании. Контролируйте, чтобы температура не превышала 60 градусов по Цельсию. После охлаждения до комнатной температуры ванны ее плотность должна достигать 1,63.

С целью уменьшения риска затравливания материала, из которого выполнена подложка, добавляют в ванну глицерин в количестве 50 грамм на литр. Ванны принято изготовлять из винипласта. Изделия навешивают на средней штанге, которая соединена с плюсом источника тока. Штанги, на которых закреплены свинцовые листы, соединяются с минусом источника тока.

Следите, чтобы температура ванны не превышала 30 градусов, так как горячий раствор на подложку действует агрессивно. Плотность тока должна составлять 4 А/дм2, но допускается изменение напряжения в пределах 5—6 Вольт.

Добавьте через определенное время концентрированную серную кислоту, чтобы поддержать плотность, равной 1,63. Для предупреждения разбавления ванны погружайте изделия в ванну после проведения их предварительной сушки. Контроль процесса особого труда не представляет, потому что плотность тока в момент удаления никеля резко падает.

Таким образом, никелирование является самым популярным гальванотехническим процессом. Покрытие никеля отличается твердостью, большой коррозионной стойкостью, сносной ценой никелирования, хорошими отражательными способностями и удельным электрическим сопротивлением.