Решение упражнений методом мат индукции. Применение метода математической индукции к решению задач на делимость натуральных чисел

Истинное знание во все времена основывалось на установлении закономерности и доказательстве её правдивости в определенных обстоятельствах. За столь длительный срок существования логических рассуждений были даны формулировки правил, а Аристотель даже составил список «правильных рассуждений». Исторически принято делить все умозаключения на два типа - от конкретного к множественному (индукция) и наоборот (дедукция). Следует отметить, что типы доказательств от частного к общему и от общего к частному существуют только во взаимосвязи и не могут быть взаимозаменяемы.

Индукция в математике

Термин "индукция" (induction) имеет латинские корни и дословно переводится как «наведение». При пристальном изучении можно выделить структуру слова, а именно латинскую приставку - in- (обозначает направленное действие внутрь или нахождение внутри) и -duction - введение. Стоит отметить, что существует два вида - полная и неполная индукции. Полную форму характеризуют выводы, сделанные на основании изучения всех предметов некоторого класса.

Неполную - выводы, применяемые ко всем предметам класса, но сделанные на основании изучения только некоторых единиц.

Полная математическая индукция - умозаключение, базирующееся на общем выводе обо всем классе каких-либо предметов, функционально связанных отношениями натурального ряда чисел на основании знания этой функциональной связи. При этом процесс доказательства проходит в три этапа:

  • на первом доказывается правильность положения математической индукции. Пример: f = 1, индукции;
  • следующий этап строится на предположении о правомерности положения для всех натуральных чисел. То есть, f=h, это предположение индукции;
  • на третьем этапе доказывается справедливость положения для числа f=h+1, на основании верности положения предыдущего пункта - это индукционный переход, или шаг математической индукции. Примером может служить так называемый если падает первая косточка в ряду (базис), то упадут все косточки в ряду (переход).

И в шутку, и всерьез

Для простоты восприятия примеры решения методом математической индукции обличают в форму задач-шуток. Таковой является задача «Вежливая очередь»:

  • Правила поведения запрещают мужчине занимать очередь перед женщиной (в такой ситуации ее пропускают вперед). Исходя из этого утверждения, если крайний в очереди - мужчина, то и все остальные - мужчины.

Ярким примером метода математической индукции является задача «Безразмерный рейс»:

  • Требуется доказать, что в маршрутку помещается любая численность людей. Правдиво утверждение, что один человек может разместиться внутри транспорта без затруднений (базис). Но как бы ни была заполнена маршрутка, 1 пассажир в нее всегда поместится (шаг индукции).

Знакомые окружности

Примеры решения методом математической индукции задач и уравнений встречаются довольно часто. Как иллюстрацию такого подхода, можно рассмотреть следующую задачу.

Условие : на плоскости размещено h окружностей. Требуется доказать, что при любом расположении фигур образуемая ими карта может быть правильно раскрашена двумя красками.

Решение : при h=1 истинность утверждения очевидна, поэтому доказательство будет строиться для количества окружностей h+1.

Примем допущение, что утверждение достоверно для любой карты, а на плоскости задано h+1 окружностей. Удалив из общего количества одну из окружностей, можно получить правильно раскрашенную двумя красками (черной и белой) карту.

При восстановлении удаленной окружности меняется цвет каждой области на противоположный (в указанном случае внутри окружности). Получается карта, правильно раскрашенная двумя цветами, что и требовалось доказать.

Примеры с натуральными числами

Ниже наглядно показано применение метода математической индукции.

Примеры решения:

Доказать, что при любом h правильным будет равенство:

1 2 +2 2 +3 2 +…+h 2 =h(h+1)(2h+1)/6.

1. Пусть h=1, значит:

R 1 =1 2 =1(1+1)(2+1)/6=1

Из этого следует, что при h=1 утверждение правильно.

2. При допущении, что h=d, получается уравнение:

R 1 =d 2 =d(d+1)(2d+1)/6=1

3. При допущении, что h=d+1, получается:

R d+1 =(d+1) (d+2) (2d+3)/6

R d+1 = 1 2 +2 2 +3 2 +…+d 2 +(d+1) 2 = d(d+1)(2d+1)/6+ (d+1) 2 =(d(d+1)(2d+1)+6(d+1) 2)/6=(d+1)(d(2d+1)+6(k+1))/6=

(d+1)(2d 2 +7d+6)/6=(d+1)(2(d+3/2)(d+2))/6=(d+1)(d+2)(2d+3)/6.

Таким образом, справедливость равенства при h=d+1 доказана, поэтому утверждение верно для любого натурального числа, что и показано в примере решения математической индукцией.

Задача

Условие : требуется доказательство того, что при любом значении h выражение 7 h -1 делимо на 6 без остатка.

Решение :

1. Допустим, h=1, в этом случае:

R 1 =7 1 -1=6 (т.е. делится на 6 без остатка)

Следовательно, при h=1 утверждение является справедливым;

2. Пусть h=d и 7 d -1 делится на 6 без остатка;

3. Доказательством справедливости утверждения для h=d+1 является формула:

R d +1 =7 d +1 -1=7∙7 d -7+6=7(7 d -1)+6

В данном случае первое слагаемое делится на 6 по допущению первого пункта, а второе слагаемое равно 6. Утверждение о том, что 7 h -1 делимо на 6 без остатка при любом натуральном h - справедливо.

Ошибочность суждений

Часто в доказательствах используют неверные рассуждения, в силу неточности используемых логических построений. В основном это происходит при нарушении структуры и логики доказательства. Примером неверного рассуждения может служить такая иллюстрация.

Задача

Условие : требуется доказательство того, что любая куча камней - не является кучкой.

Решение :

1. Допустим, h=1, в этом случае в кучке 1 камень и утверждение верно (базис);

2. Пусть при h=d верно, что куча камней - не является кучкой (предположение);

3. Пусть h=d+1, из чего следует, что при добавлении еще одного камня множество не будет являться кучкой. Напрашивается вывод, что предположение справедливо при всех натуральных h.

Ошибка заключается в том, что нет определения, какое количество камней образует кучку. Такое упущение называется поспешным обобщением в методе математической индукции. Пример это ясно показывает.

Индукция и законы логики

Исторически сложилось так, что всегда "шагают рука об руку". Такие научные дисциплины как логика, философия описывают их в виде противоположностей.

С точки зрения закона логики в индуктивных определениях просматривается опора на факты, а правдивость посылок не определяет правильность получившегося утверждения. Зачастую получаются умозаключения с определенной долей вероятности и правдоподобности, которые, естественно, должны быть проверены и подтверждены дополнительными исследованиями. Примером индукции в логике может быть утверждение:

В Эстонии - засуха, в Латвии - засуха, в Литве - засуха.

Эстония, Латвия и Литва - прибалтийские государства. Во всех прибалтийских государствах засуха.

Из примера можно заключить, что новую информацию или истину нельзя получить при помощи метода индукции. Все, на что можно рассчитывать - это некоторая возможная правдивость выводов. Причем, истинность посылок не гарантирует таких же заключений. Однако данный факт не обозначает, что индукция прозябает на задворках дедукции: огромное множество положений и научных законов обосновываются при помощи метода индукции. Примером может служить та же математика, биология и другие науки. Связано это по большей части с методом полной индукции, но в некоторых случаях применима и частичная.

Почтенный возраст индукции позволил ей проникнуть практически во все сферы деятельности человека - это и наука, и экономика, и житейские умозаключения.

Индукция в научной среде

Метод индукции требует щепетильного отношения, поскольку слишком многое зависит от количества изученных частностей целого: чем большее число изучено, тем достовернее результат. Исходя из этой особенности, научные законы, полученные методом индукции, достаточно долго проверяются на уровне вероятностных предположений для вычленения и изучения всех возможных структурных элементов, связей и воздействий.

В науке индукционное заключение основывается на значимых признаках, с исключением случайных положений. Данный факт важен в связи со спецификой научного познания. Это хорошо видно на примерах индукции в науке.

Различают два вида индукции в научном мире (в связи со способом изучения):

  1. индукция-отбор (или селекция);
  2. индукция - исключение (элиминация).

Первый вид отличается методичным (скрупулезным) отбором образцов класса (подклассов) из разных его областей.

Пример индукции этого вида следующий: серебро (или соли серебра) очищает воду. Вывод основывается на многолетних наблюдениях (своеобразный отбор подтверждений и опровержений - селекция).

Второй вид индукции строится на выводах, устанавливающих причинные связи и исключающих обстоятельства, не отвечающие ее свойствам, а именно всеобщность, соблюдение временной последовательности, необходимость и однозначность.

Индукция и дедукция с позиции философии

Если взглянуть на историческую ретроспективу, то термин "индукция" впервые был упомянут Сократом. Аристотель описывал примеры индукции в философии в более приближенном терминологическом словаре, но вопрос неполной индукции остается открытым. После гонений на аристотелевский силлогизм индуктивный метод стал признаваться плодотворным и единственно возможным в естествознании. Отцом индукции как самостоятельного особого метода считают Бэкона, однако ему не удалось отделить, как того требовали современники, индукцию от дедуктивного метода.

Дальнейшей разработкой индукции занимался Дж. Милль, который рассматривал индукционную теорию с позиции четырех основных методов: согласия, различия, остатков и соответствующих изменений. Неудивительно, что на сегодняшний день перечисленные методы при их детальном рассмотрении являются дедуктивными.

Осознание несостоятельности теорий Бэкона и Милля привело ученых к исследованию вероятностной основы индукции. Однако и здесь не обошлось без крайностей: были предприняты попытки свести индукцию к теории вероятности со всеми вытекающими последствиями.

Вотум доверия индукция получает при практическом применении в определенных предметных областях и благодаря метрической точности индуктивной основы. Примером индукции и дедукции в философии можно считать Закон всемирного тяготения. На дату открытия закона Ньютону удалось проверить его с точностью в 4 процента. А при проверке спустя более двухсот лет правильность была подтверждена с точностью до 0,0001 процента, хотя проверка велась все теми же индуктивными обобщениями.

Современная философия больше внимания уделяет дедукции, что продиктовано логичным желанием вывести из уже известного новые знания (или истины), не обращаясь к опыту, интуиции, а оперируя «чистыми» рассуждениями. При обращении к истинным посылкам в дедуктивном методе во всех случаях на выходе получается истинное утверждение.

Эта очень важная характеристика не должна затмевать ценность индуктивного метода. Поскольку индукция, опираясь на достижения опыта, становится и средством его обработки (включая обобщение и систематизацию).

Применение индукции в экономике

Индукция и дедукция давно используются как методы исследования экономики и прогнозирования ее развития.

Спектр использования метода индукции достаточно широк: изучение выполнения прогнозных показателей (прибыли, амортизация и т. д.) и общая оценка состояния предприятия; формирование эффективной политики продвижения предприятия на основе фактов и их взаимосвязей.

Тот же метод индукции применен в «картах Шухарта», где при предположении о разделении процессов на управляемые и неуправляемые утверждается, что рамки управляемого процесса малоподвижны.

Следует отметить, что научные законы обосновываются и подтверждаются при помощи метода индукции, а поскольку экономика является наукой, часто пользующейся математическим анализом, теорией рисков и статистическими данными, то совершенно неудивительно присутствие индукции в списке основных методов.

Примером индукции и дедукции в экономике может служить следующая ситуация. Увеличение цены на продукты питания (из потребительской корзины) и товары первой необходимости подталкивают потребителя к мысли о возникающей дороговизне в государстве (индукция). Вместе с тем, из факта дороговизны при помощи математических методов можно вывести показатели роста цен на отдельные товары или категории товаров (дедукция).

Чаще всего обращается к методу индукции управляющий персонал, руководители, экономисты. Для того чтобы можно было с достаточной правдивостью прогнозировать развитие предприятия, поведение рынка, последствия конкуренции, необходим индукционно-дедуктивный подход к анализу и обработке информации.

Наглядный пример индукции в экономике, относящийся к ошибочным суждениям:

  • прибыль компании сократилась на 30%;
    конкурирующая компания расширила линейку продукции;
    больше ничего не изменилось;
  • производственная политика конкурирующей компании стала причиной сокращения прибыли на 30%;
  • следовательно, требуется внедрить такую же производственную политику.

Пример является красочной иллюстрацией того, как неумелое использование метода индукции способствует разорению предприятия.

Дедукция и индукция в психологии

Поскольку существует метод, то, по логике вещей, имеет место и должным образом организованное мышление (для использования метода). Психология как наука, изучающая психические процессы, их формирование, развитие, взаимосвязи, взаимодействия, уделяет внимание «дедуктивному» мышлению, как одной из форм проявления дедукции и индукции. К сожалению, на страницах по психологии в сети Интернет практически отсутствует обоснование целостности дедуктивно-индуктивного метода. Хотя профессиональные психологи чаще сталкиваются с проявлениями индукции, а точнее - ошибочными умозаключениями.

Примером индукции в психологии, как иллюстрации ошибочных суждений, может служить высказывание: моя мать - обманывает, следовательно, все женщины - обманщицы. Еще больше можно почерпнуть «ошибочных» примеров индукции из жизни:

  • учащийся ни на что не способен, если получил двойку по математике;
  • он - дурак;
  • он - умный;
  • я могу все;

И многие другие оценочные суждения, выведенные на абсолютно случайных и, порой, малозначительных посылах.

Следует отметить: когда ошибочность суждений человека доходит до абсурда, появляется фронт работы для психотерапевта. Один из примеров индукции на приеме у специалиста:

«Пациент абсолютно уверен в том, что красный цвет несет для него только опасность в любых проявлениях. Как следствие, человек исключил из своей жизни данную цветовую гамму - насколько это возможно. В домашней обстановке возможностей для комфортного проживания много. Можно отказаться от всех предметов красного цвета или заменить их на аналоги, выполненные в другой цветовой гамме. Но в общественных местах, на работе, в магазине - невозможно. Попадая в ситуацию стресса, пациент каждый раз испытывает «прилив» абсолютно разных эмоциональных состояний, что может представлять опасность для окружающих».

Этот пример индукции, причем неосознанной, называется «фиксированные идеи». В случае если такое происходит с психически здоровым человеком, можно говорить о недостатке организованности мыслительной деятельности. Способом избавления от навязчивых состояний может стать элементарное развитие дедуктивного мышления. В иных случаях с такими пациентами работают психиатры.

Приведенные примеры индукции свидетельствуют о том, что «незнание закона не освобождает от последствий (ошибочных суждений)».

Психологи, работая над темой дедуктивного мышления, составили список рекомендаций, призванный помочь людям освоить данный метод.

Первым пунктом значится решение задач. Как можно было убедиться, та форма индукции, которая употребляется в математике, может считаться «классической», и использование этого метода способствует «дисциплинированности» ума.

Следующим условием развития дедуктивного мышления является расширение кругозора (кто ясно мыслит, тот ясно излагает). Данная рекомендация направляет «страждущих» в скарбницы наук и информации (библиотеки, сайты, образовательные инициативы, путешествия и т. д.).

Отдельно следует упомянуть о так называемой «психологической индукции». Этот термин, хотя и нечасто, можно встретить на просторах интернета. Все источники не дают хотя бы краткую формулировку определения этого термина, но ссылаются на «примеры из жизни», при этом выдавая за новый вид индукции то суггестию, то некоторые формы психических заболеваний, то крайние состояния психики человека. Из всего перечисленного понятно, что попытка вывести «новый термин», опираясь на ложные (зачастую не соответствующие действительности) посылки, обрекает экспериментатора на получение ошибочного (или поспешного) утверждения.

Следует отметить, что отсылка к экспериментам 1960 года (без указания места проведения, фамилий экспериментаторов, выборки испытуемых и самое главное - цели эксперимента) выглядит, мягко говоря, неубедительно, а утверждение о том, что мозг воспринимает информацию, минуя все органы восприятия (фраза «испытывает воздействие» в данном случае вписалась бы более органично), заставляет задуматься над легковерностью и некритичностью автора высказывания.

Вместо заключения

Царица наук - математика, не зря использует все возможные резервы метода индукции и дедукции. Рассмотренные примеры позволяют сделать вывод о том, что поверхностное и неумелое (бездумное, как еще говорят) применение даже самых точных и надежных методов приводит всегда к ошибочным результатам.

В массовом сознании метод дедукции ассоциируется со знаменитым Шерлоком Холмсом, который в своих логических построениях чаще использует примеры индукции, в нужных ситуациях пользуясь дедукцией.

В статье были рассмотрены примеры применения этих методов в различных науках и сферах жизнедеятельности человека.

МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ

Слово индукция по-русски означает наведение, а индуктивными называют выводы, на основе наблюдений, опытов, т.е. полученные путем заключения от частного к общему.

Например, мы каждый день наблюдаем, что Солнце восходит с востока. Поэтому можно быть уверенным, что и завтра оно появится на востоке, а не на западе. Этот вывод мы делаем, не прибегая ни к каким предположениям о причине движения Солнца по небу (более того, само это движение оказывается кажущимся, поскольку на самом деле движется земной шар). И, тем не менее, этот индуктивный вывод правильно описывает те наблюдения, которые мы проведем завтра.

Роль индуктивных выводов в экспериментальных науках очень велика. Они дают те положения, из которых потом путем дедукции делаются дальнейшие умозаключения. И хотя теоретическая механика основывается на трех законах движения Ньютона, сами эти законы явились результатом глубокого продумывания опытных данных, в частности законов Кеплера движения планет, выведенных им при обработке многолетних наблюдений датского астронома Тихо Браге. Наблюдение, индукция оказываются полезными и в дальнейшем для уточнения сделанных предположений. После опытов Майкельсона по измерению скорости света в движущейся среде оказалось необходимым уточнить законы физики, создать теорию относительности.

В математике роль индукции в значительной степени состоит в том, что она лежит в основе выбираемой аксиоматики. После того как длительная практика показала, что прямой путь всегда короче кривого или ломанного, естественно было сформулировать аксиому: для любых трех точек А, В и С выполняется неравенство

Лежащее в основе арифметики понятие следовать за тоже появилось при наблюдениях за строем солдат, кораблей и другими упорядоченными множествами.

Не следует, однако, думать, что этим исчерпывается роль индукции в математике. Разумеется, мы не должны экспериментально проверять теоремы, логически выведенные из аксиом: если при выводе не было сделано логических ошибок, то они постольку верны, поскольку истинны принятые нами аксиомы. Но из данной системы аксиом можно вывести очень много утверждений. И отбор тех утверждений, которые надо доказывать, вновь подсказывается индукцией. Именно она позволяет отделить полезные теоремы от бесполезных, указывает, какие теоремы могут оказаться верными, и даже помогает наметить путь доказательства.


    Суть метода математической индукции

Во многих разделах арифметики, алгебры, геометрии, анализа приходится доказывать истинность предложений А(n), зависящих от натуральной переменной. Доказательство истинности предложения А(n) для всех значений переменной часто удается провести методом математической индукции, который основан на следующем принципе.

Предложение А(n) считается истинным для всех натуральных значений переменной, если выполнены следующие два условия:

    Предложение А(n) истинно для n=1.

    Из предположения, что А(n) истинно для n=k (где k - любое натуральное число), следует, что оно истинно и для следующего значения n=k+1.

Этот принцип называется принципом математической индукции. Обычно он выбирается в качестве одной из аксиом, определяющих натуральный ряд чисел, и, следовательно, принимается без доказательства.

Под методом математической индукции понимают следующий способ доказательства. Если требуется доказать истинность предложения А(n) для всех натуральных n, то, во-первых, следует проверить истинность высказывания А(1) и, во-вторых, предположив истинность высказывания А(k), попытаться доказать, что высказывание А(k+1) истинно. Если это удается доказать, причем доказательство остается справедливым для каждого натурального значения k, то в соответствии с принципом математической индукции предложение А(n) признается истинным для всех значений n.

Метод математической индукции широко применяется при доказательстве теорем, тождеств, неравенств, при решении задач на делимость, при решении некоторых геометрических и многих других задач.


    Метод математической индукции в решении задач на

делимость

С помощью метода математической индукции можно доказывать различные утверждения, касающиеся делимости натуральных чисел.

Следующее утверждение можно сравнительно просто доказать. Покажем, как оно получается с помощью метода математической индукции.

Пример 1 . Если n - натуральное число, то число четное.

При n=1 наше утверждение истинно: - четное число. Предположим, что - четное число. Так как , a 2k - четное число, то и четное. Итак, четность доказана при n=1, из четности выведена четность .Значит, четно при всех натуральных значениях n.

Пример 2. Доказать истинность предложения

A(n)={число 5 кратно 19}, n - натуральное число.

Решение.

Высказывание А(1)={число кратно 19} истинно.

Предположим, что для некоторого значения n=k

А(k)={число кратно 19} истинно. Тогда, так как

Очевидно, что и A(k+1) истинно. Действительно, первое слагаемое делится на 19 в силу предположения, что A(k) истинно; второе слагаемое тоже делится на 19, потому что содержит множитель 19. Оба условия принципа математической индукции выполнены, следовательно, предложение A(n) истинно при всех значениях n.


    Применение метода математической индукции к

суммированию рядов

Пример 1. Доказать формулу

, n - натуральное число.

Решение.

При n=1 обе части равенства обращаются в единицу и, следовательно, первое условие принципа математической индукции выполнено.

Предположим, что формула верна при n=k, т.е.

.

Прибавим к обеим частям этого равенства и преобразуем правую часть. Тогда получим


Таким образом, из того, что формула верна при n=k, следует, что она верна и при n=k+1. Это утверждение справедливо при любом натуральном значении k. Итак, второе условие принципа математической индукции тоже выполнено. Формула доказана.

Пример 2. Доказать, что сумма n первых чисел натурального ряда равна .

Решение.

Обозначим искомую сумму , т.е. .

При n=1 гипотеза верна.

Пусть . Покажем, что .

В самом деле,

Задача решена.

Пример 3. Доказать, что сумма квадратов n первых чисел натурального ряда равна .

Решение.

Пусть .

.

Предположим, что . Тогда

И окончательно .

Пример 4. Доказать, что .

Решение.

Если , то

Пример 5. Доказать, что

Решение.

При n=1 гипотеза очевидно верна.

Пусть .

Докажем, что .

Действительно,

    Примеры применения метода математической индукции к

доказательству неравенств

Пример 1. Доказать, что при любом натуральном n>1

.

Решение.

Обозначим левую часть неравенства через .

Следовательно, при n=2 неравенство справедливо.

Пусть при некотором k. Докажем, что тогда и . Имеем , .

Сравнивая и , имеем , т.е. .

При любом натуральном k правая часть последнего равенства положительна. Поэтому . Но , значит, и .

Пример 2. Найти ошибку в рассуждении.

Утверждение. При любом натуральном n справедливо неравенство .

Доказательство.

. (1)

Докажем, что тогда неравенство справедливо и при n=k+1, т.е.

.

Действительно, не меньше 2 при любом натуральном k. Прибавим к левой части неравенства (1) , а к правой 2. Получим справедливое неравенство , или . Утверждение доказано.

Пример 3. Доказать, что , где >-1, , n - натуральное число, большее 1.

Решение.

При n=2 неравенство справедливо, так как .

Пусть неравенство справедливо при n=k, где k - некоторое натуральное число, т.е.

. (1)

Покажем, что тогда неравенство справедливо и при n=k+1, т.е.

. (2)

Действительно, по условию, , поэтому справедливо неравенство

, (3)

полученное из неравенства (1) умножением каждой части его на . Перепишем неравенство (3) так: . Отбросив в правой части последнего неравенства положительное слагаемое , получим справедливое неравенство (2).

Пример 4. Доказать, что

(1)

где , , n - натуральное число, большее 1.

Решение.

При n=2 неравенство (1) принимает вид


. (2)

Так как , то справедливо неравенство

. (3)

Прибавив к каждой части неравенства (3) по , получим неравенство (2).

Этим доказано, что при n=2 неравенство (1) справедливо.

Пусть неравенство (1) справедливо при n=k, где k - некоторое натуральное число, т.е.

. (4)

Докажем, что тогда неравенство (1) должно быть справедливо и при n=k+1, т.е.

(5)

Умножим обе части неравенства (4) на a+b. Так как, по условию, , то получаем следующее справедливое неравенство:

. (6)

Для того чтобы доказать справедливость неравенства (5), достаточно показать, что

, (7)

или, что то же самое,

. (8)

Неравенство (8) равносильно неравенству

. (9)

Если , то , и в левой части неравенства (9) имеем произведение двух положительных чисел. Если , то , и в левой части неравенства (9) имеем произведение двух отрицательных чисел. В обоих случаях неравенство (9) справедливо.

Этим доказано, что из справедливости неравенства (1) при n=k следует его справедливость при n=k+1.

    Метод математической индукции в применение к другим

задачам

Наиболее естественное применение метода математической индукции в геометрии, близкое к использованию этого метода в теории чисел и в алгебре, - это применение к решению геометрических задач на вычисление. Рассмотрим несколько примеров.

Пример 1. Вычислить сторону правильного - угольника, вписанного в круг радиуса R.

Решение.

При n=2 правильный 2 n - угольник есть квадрат; его сторона . Далее, согласно формуле удвоения


находим, что сторона правильного восьмиугольника , сторона правильного шестнадцатиугольника , сторона правильного тридцатидвухугольника . Можно предположить поэтому, что сторона правильного вписанного 2 n - угольника при любом равна

. (1)

Допустим, что сторона правильного вписанного - угольника выражается формулой (1). В таком случае по формуле удвоения


,

откуда следует, что формула (1) справедлива при всех n.

Пример 2. На сколько треугольников n-угольник (не обязательно выпуклый) может быть разбит своими непересекающимися диагоналями?

Решение.

Для треугольника это число равно единице (в треугольнике нельзя провести ни одной диагонали); для четырехугольника это число равно, очевидно, двум.

Предположим, что мы уже знаем, что каждый k-угольник, где k 1 А 2 …А n на треугольники.

А n

А 1 А 2

Пусть А 1 А k - одна из диагоналей этого разбиения; она делит n-угольник А 1 А 2 …А n на k-угольник A 1 A 2 …A k и (n-k+2)-угольник А 1 А k A k+1 …A n . В силу сделанного предположения, общее число треугольников разбиения будет равно

(k-2)+[(n-k+2)-2]=n-2;

тем самым наше утверждение доказано для всех n.

Пример 3. Указать правило вычисления числа P(n) способов, которыми выпуклый n-угольник может быть разбит на треугольники непересекающимися диагоналями.

Решение.

Для треугольника это число равно, очевидно, единице: P(3)=1.

Предположим, что мы уже определили числа P(k) для всех k 1 А 2 …А n . При всяком разбиении его на треугольники сторона А 1 А 2 будет стороной одного из треугольников разбиения, третья вершина этого треугольника может совпасть с каждой из точек А 3 , А 4 , …,А n . Число способов разбиения n-угольника, при которых эта вершина совпадает с точкой А 3 , равно числу способов разбиения на треугольники (n-1)-угольника А 1 А 3 А 4 …А n , т.е. равно P(n-1). Число способов разбиения, при которых эта вершина совпадает с А 4 , равно числу способов разбиения (n-2)-угольника А 1 А 4 А 5 …А n , т.е. равно P(n-2)=P(n-2)P(3); число способов разбиения, при которых она совпадает с А 5 , равно P(n-3)P(4), так как каждое из разбиений (n-3)-угольника А 1 А 5 …А n можно комбинировать при этом с каждым из разбиений четырехугольника А 2 А 3 А 4 А 5 , и т.д. Таким образом, мы приходим к следующему соотношению:

Р(n)=P(n-1)+P(n-2)P(3)+P(n-3)P(4)+…+P(3)P(n-2)+P(n-1).

С помощью этой формулы последовательно получаем:

P(4)=P(3)+P(3)=2,

P(5)=P(4)+P(3)P(3)+P(4)+5,

P(6)=P(5)+P(4)P(3)+P(3)P(4)+P(5)=14

и т.д.

Так же при помощи метода математической индукции можно решать задачи с графами.

Пусть на плоскости задана сеть линий, соединяющих между собой какие-то точки и не имеющие других точек. Такую сеть линий мы будем называть картой, заданные точки ее вершинами, отрезки кривых между двумя смежными вершинами - границами карты, части плоскости, на которые она разбивается границами - странами карты.

Пусть на плоскости задана некоторая карта. Мы будем говорить, что она правильно раскрашена, если каждая ее страна закрашена определенной краской, причем любые две страны, имеющие между собой общую границу, закрашены в разные цвета.

Пример 4. На плоскости дано n окружностей. Доказать, что при любом расположении этих окружностей образуемую ими карту можно правильно раскрасить двумя красками.

Решение.

При n=1 наше утверждение очевидно.

Предположим, что наше утверждение справедливо для любой карты, образованной n окружностями, и пусть на плоскости задано n+1 окружностей. Удалив одну из этих окружностей, мы получим карту, которую в силу сделанного предположения можно правильно раскрасить двумя красками, например черной и белой.

Лекция 6. Метод математической индукции.

Новые знания в науке и жизни добываются разными способами, но все они (если не углубляться в детали) делятся на два вида – переход от общего к частному и от частного к общему. Первый – это дедукция, второй – индукция. Дедуктивные рассуждения – это то, что в математике обычно называют логическими рассуждениями , и в математической науке дедукция является единственным законным методом исследования. Правила логических рассуждений были сформулированы два с половиной тысячелетия назад древнегреческим учёным Аристотелем. Он создал полный список простейших правильных рассуждений, силлогизмов – «кирпичиков» логики, одновременно указав типичные рассуждения, очень похожие на правильные, однако неправильные (с такими «псевдологическими» рассуждениями мы часто встречаемся в СМИ).

Индукция (induction – по-латыни наведение ) наглядно иллюстрируется известной легендой о том, как Исаак Ньютон сформулировал закон всемирного тяготения после того, как ему на голову упало яблоко. Ещё пример из физики: в таком явлении, как электромагнитная индукция, электрическое поле создает, «наводит» магнитное поле. «Ньютоново яблоко» – типичный пример ситуации, когда один или несколько частных случаев, то есть наблюдения , «наводят» на общее утверждение, общий вывод делается на основании частных случаев. Индуктивный метод является основным для получения общих закономерностей и в естественных, и в гуманитарных науках. Но он имеет весьма существенный недостаток: на основании частных примеров может быть сделан неверный вывод. Гипотезы, возникающие при частных наблюдениях, не всегда являются правильными. Рассмотрим пример, принадлежащий Эйлеру.

Будем вычислять значение трехчлена при некоторых первых значенияхn :

Заметим, что получаемые в результате вычислений числа являются простыми. И непосредственно можно убедиться, что для каждого n от 1 до 39 значение многочлена
является простым числом. Однако приn =40 получаем число 1681=41 2 , которое не является простым. Таким образом, гипотеза, которая здесь могла возникнуть, то есть гипотеза о том, что при каждом n число
является простым, оказывается неверной.

Лейбниц в 17 веке доказал, что при всяком целом положительном n число
делится на 3, число
делится на 5 и т.д. На основании этого он предположил, что при всяком нечётномk и любом натуральном n число
делится наk , но скоро сам заметил, что
не делится на 9.

Рассмотренные примеры позволяют сделать важный вывод: утверждение может быть справедливым в целом ряде частных случаев и в то же время несправедливым вообще. Вопрос о справедливости утверждения в общем случае удается решить посредством применения особого метода рассуждений, называемого методом математической индукции (полной индукции, совершенной индукции).

6.1. Принцип математической индукции.

♦ В основе метода математической индукции лежит принцип математической индукции , заключающийся в следующем:

1) проверяется справедливость этого утверждения для n =1 (базис индукции) ,

2) предполагается справедливость этого утверждения для n = k , где k – произвольное натуральное число 1 (предположение индукции) , и с учётом этого предположения устанавливается справедливость его для n = k +1.

Доказательство . Предположим противное, то есть предположим, что утверждение справедливо не для всякого натурального n . Тогда существует такое натуральное m , что:

1) утверждение для n =m несправедливо,

2) для всякого n , меньшего m , утверждение справедливо (иными словами, m есть первое натуральное число, для которого утверждение несправедливо).

Очевидно, что m >1, т.к. для n =1 утверждение справедливо (условие 1). Следовательно,
– натуральное число. Выходит, что для натурального числа
утверждение справедливо, а для следующего натурального числаm оно несправедливо. Это противоречит условию 2. ■

Заметим, что в доказательстве использовалась аксиома о том, что в любой совокупности натуральных чисел содержится наименьшее число.

Доказательство, основанное на принципе математической индукции, называется методом полной математической индукции .

Пример 6.1. Доказать, что при любом натуральном n число
делится на 3.

Решение.

1) При n =1 , поэтому a 1 делится на 3 и утверждение справедливо при n =1.

2) Предположим, что утверждение справедливо при n =k ,
, то есть что число
делится на 3, и установим, что при n =k +1 число делится на 3.

В самом деле,

Т.к. каждое слагаемое делится на 3, то их сумма также делится на 3. ■

Пример 6.2. Доказать, что сумма первых n натуральных нечётных чисел равна квадрату их числа, то есть .

Решение. Воспользуемся методом полной математической индукции.

1) Проверяем справедливость данного утверждения при n =1: 1=1 2 – это верно.

2) Предположим, что сумма первых k (
) нечётных чисел равна квадрату числа этих чисел, то есть . Исходя из этого равенства, установим, что сумма первых k +1 нечётных чисел равна
, то есть .

Пользуемся нашим предположением и получаем

. ■

Метод полной математической индукции применяется для доказательства некоторых неравенств. Докажем неравенство Бернулли.

Пример 6.3. Доказать, что при
и любом натуральномn справедливо неравенство
(неравенство Бернулли).

Решение. 1) При n =1 получаем
, что верно.

2) Предполагаем, что при n =k имеет место неравенство
(*). Используя это предположение, докажем, что
. Отметим, что при
это неравенство выполняется и поэтому достаточно рассмотреть случай
.

Умножим обе части неравенства (*) на число
и получим:

То есть (1+
.■

Доказательство методом неполной математической индукции некоторого утверждения, зависящего от n , где
проводится аналогичным образом, но в начале устанавливается справедливость для наименьшего значенияn .

В некоторых задачах явно не сформулировано утверждение, которое можно доказать методом математической индукции. В таких случаях надо самим установить закономерность и высказать гипотезу о справедливости этой закономерности, а затем методом математической индукции проверить предполагаемую гипотезу.

Пример 6.4. Найти сумму
.

Решение. Найдём суммы S 1 , S 2 , S 3 . Имеем
,
,
. Высказываем гипотезу, что при любом натуральномn справедлива формула
. Для проверки этой гипотезы воспользуемся методом полной математической индукции.

1) При n =1 гипотеза верна, т.к.
.

2) Предположим, что гипотеза верна при n =k ,
, то есть
. Используя эту формулу, установим, что гипотеза верна и приn =k +1, то есть

В самом деле,

Итак, исходя из предположения, что гипотеза верна при n =k ,
, доказано, что она верна и при n =k +1, и на основании принципа математической индукции делаем вывод, что формула справедлива при любом натуральном n . ■

Пример 6.5. В математике доказывается, что сумма двух равномерно непрерывных функций является равномерно непрерывной функцией. Опираясь на это утверждение, нужно доказать, что сумма любого числа
равномерно непрерывных функций является равномерно непрерывной функцией. Но поскольку мы ещё не ввели понятие «равномерно непрерывная функция», поставим задачу более абстрактно: пусть известно, что сумма двух функций, обладающих некоторым свойством S , сама обладает свойством S . Докажем, что сумма любого числа функций обладает свойством S .

Решение. Базис индукции здесь содержится в самой формулировке задачи. Сделав предположение индукции, рассмотрим
функций f 1 , f 2 , …, f n , f n +1 , обладающих свойством S . Тогда . В правой части первое слагаемое обладает свойствомS по предположению индукции, второе слагаемое обладает свойством S по условию. Следовательно, их сумма обладает свойством S – для двух слагаемых «работает» базис индукции.

Тем самым утверждение доказано и будем использовать его далее. ■

Пример 6.6. Найти все натуральные n , для которых справедливо неравенство

.

Решение. Рассмотрим n =1, 2, 3, 4, 5, 6. Имеем: 2 1 >1 2 , 2 2 =2 2 , 2 3 <3 2 , 2 4 =4 2 , 2 5 >5 2 , 2 6 >6 2 . Таким образом, можно высказать гипотезу: неравенство
имеет место для каждого
. Для доказательства истинности этой гипотезы воспользуемся принципом неполной математической индукции.

1) Как было установлено выше, данная гипотеза истинна при n =5.

2) Предположим, что она истинна для n =k ,
, то есть справедливо неравенство
. Используя это предположение, докажем, что справедливо неравенство
.

Т. к.
и при
имеет место неравенство

при
,

то получаем, что
. Итак, истинность гипотезы приn =k +1 следует из предположения, что она верна при n =k ,
.

Из пп. 1 и 2 на основании принципа неполной математической индукции следует, что неравенство
верно при каждом натуральном
. ■

Пример 6.7. Доказать, что для любого натурального числа n справедлива формула дифференцирования
.

Решение. При n =1 данная формула имеет вид
, или 1=1, то есть она верна. Сделав предположение индукции, будем иметь:

что и требовалось доказать. ■

Пример 6.8. Доказать, что множество, состоящее из n элементов, имеет подмножеств.

Решение. Множество, состоящее из одного элемента а , имеет два подмножества. Это верно, поскольку все его подмножества – пустое множество и само это множество, и 2 1 =2.

Предположим, что всякое множество из n элементов имеет подмножеств. Если множество А состоит изn +1 элементов, то фиксируем в нём один элемент – обозначим его d , и разобьём все подмножества на два класса – не содержащие d и содержащие d . Все подмножества из первого класса являются подмножествами множества В, получающегося из А выбрасыванием элемента d .

Множество В состоит из n элементов, и поэтому, по предположению индукции, у него подмножеств, так что в первом классеподмножеств.

Но во втором классе подмножеств столько же: каждое из них получается ровно из одного подмножества первого класса добавлением элемента d . Следовательно, всего у множества А
подмножеств.

Тем самым утверждение доказано. Отметим, что оно справедливо и для множества, состоящего из 0 элементов – пустого множества: оно имеет единственное подмножество – самого себя, и 2 0 =1. ■

Индукция есть метод получения общего утверждения из частных наблюдений. В случае, когда математическое утверждение касается конечного числа объектов, его можно доказать, проверяя для каждого объекта. Например, утверждение: «Каждое двузначное чётное число является суммой двух простых чисел,» – следует из серии равенств, которые вполне реально установить:

10=5+5 12=5+7 14=7+7 16=5+11 . . . 92=3+89 94=5+89 96=7+89 98=19+79.

Метод доказательства, при котором проверяется утверждение для конечного числа случаев, исчерпывающих все возможности, называют полной индукцией. Этот метод применим сравнительно редко, поскольку математические утверждения касаются, как правило, не конечных, а бесконечных множеств объектов. Например, доказанное выше полной индукцией утверждение о четных двузначных числах является лишь частным случаем теоремы: «Любое четное число является суммой двух простых чисел». Эта теорема до сих пор ни доказана, ни опровергнута.

Математическая индукция – метод доказательства некоторого утверждения для любого натурального n основанный на принципе математической индукции: «Если утверждение верно для n=1 и из справедливости его для n=k вытекает справедливость этого утверждения для n=k+1, то оно верно для всех n». Способ доказательства методом математической индукции заключается в следующем:

1) база индукции: доказывают или непосредственно проверяют справедливость утверждения для n=1 (иногда n=0 или n=n 0);

2) индукционный шаг (переход): предполагают справедливость утверждения для некоторого натурального n=k и, исходя из этого предположения, доказывают справедливость утверждения для n=k+1.

Задачи с решениями

1. Доказать, что при любом натуральном n число 3 2n+1 +2 n+2 делится на 7.

Обозначим А(n)=3 2n+1 +2 n+2 .

База индукции. Если n=1, то А(1)=3 3 +2 3 =35 и, очевидно, делится на 7.

Предположение индукции. Пусть А(k) делится на 7.

Индукционный переход. Докажем, что А(k+1) делится на 7, то есть справедливость утверждения задачи при n=k.

А(k+1)=3 2(k+1)+1 +2 (k+1)+2 =3 2k+1 ·3 2 +2 k+2 ·2 1 =3 2k+1 ·9+2 k+2 ·2=

3 2k+1 ·9+2 k+2 ·(9–7)=(3 2k+1 +2 k+2)·9–7·2 k+2 =9·А(k)–7·2 k+2 .

Последнее число делится на 7, так как представляет собой разность двух целых чисел, делящихся на 7. Следовательно, 3 2n+1 +2 n+2 делится на 7 при любом натуральном n.

2. Доказать, что при любом натуральном n число 2 3 n +1 делится на 3 n+1 и не делится на 3 n+2 .

Введём обозначение: а i =2 3 i +1.

При n=1 имеем, а 1 =2 3 +1=9. Итак, а 1 делится на 3 2 и не делится на 3 3 .

Пусть при n=k число а k делится на 3 k+1 и не делится на 3 k+2 , то есть а k =2 3 k +1=3 k+1 ·m, где m не делится на 3. Тогда

а k+1 =2 3 k+1 +1=(2 3 k) 3 +1=(2 3 k +1)(2 3 k ·2 –2 3 k +1)=3 k+1 ·m·((2 3 k +1) 2 –3·2 3 k)=3 k+1 ·m·((3 k+1 ·m) 2 –3·2 3 k)=

3 k+2 ·m·(3 2k+1 ·m 2 –2 3 k).

Очевидно, что а k+1 делится на 3 k+2 и не делится на 3 k+3 .

Следовательно, утверждение доказано для любого натурального n.

3. Известно, что х+1/x – целое число. Доказать, что х n +1/х n – так же целое число при любом целом n.

Введём обозначение: а i =х i +1/х i и сразу отметим, что а i =а –i , поэтому дальше будем вести речь о натуральных индексах.

Заметим: а 1 – целое число по условию; а 2 – целое, так как а 2 =(а 1) 2 –2; а 0 =2.

Предположим, что а k целое при любом натуральном k не превосходящем n. Тогда а 1 ·а n – целое число, но а 1 ·а n =а n+1 +а n–1 и а n+1 =а 1 ·а n –а n–1 . Однако, а n–1 , согласно индукционному предположению, – целое. Значит, целым является и а n+1 . Следовательно, х n +1/х n – целое число при любом целом n, что и требовалось доказать.

4. Доказать, что при любом натуральном n большем 1 справедливо двойное неравенство

5. Доказать, что при натуральном n > 1 и |х|

(1–x) n +(1+x) n

При n=2 неравенство верно. Действительно,

(1–x) 2 +(1+x) 2 = 2+2·х 2

Если неравенство верно при n=k, то при n=k+1 имеем

(1–x) k+1 +(1+x) k+1

Неравенство доказано для любого натурального n > 1.

6. На плоскости дано n окружностей. Доказать, что при любом расположении этих окружностей образуемую ими карту можно правильно раскрасить двумя красками.

Воспользуемся методом математической индукции.

При n=1 утверждение очевидно.

Предположим, что утверждение справедливо для любой карты, образованной n окружностями, и пусть на плоскости задано n+1 окружностей. Удалив одну из этих окружностей, мы получим карту, которую в силу сделанного предположения можно правильно раскрасить двумя красками (смотрите первый рисунок из приведённых ниже).

Восстановим затем отброшенную окружность и по одну сторону от нее, например внутри, изменим цвет каждой области на противоположный (смотрите второй рисунок). Легко видеть, что при этом мы получим карту, правильную раскрашенную двумя красками, но только теперь уже при n+1 окружностях, что и требовалось доказать.

7. Выпуклый многоугольник будем называть «красивым», если выполняются следующие условия:

1) каждая его вершина окрашена в один из трёх цветов;

2) любые две соседние вершины окрашены в разные цвета;

3) в каждый из трёх цветов окрашена, по крайней мере, одна вершина многоугольника.

Доказать, что любой красивый n-угольник можно разрезать не пересекающимися диагоналями на «красивые» треугольники.

Воспользуемся методом математической индукции.

База индукции. При наименьшем из возможных n=3 утверждение задачи очевидно: вершины «красивого» треугольника окрашены в три разных цвета и никакие разрезы не нужны.

Предположение индукции. Допустим, что утверждение задачи верно для любого «красивого» n-угольника.

Индукционный шаг. Рассмотрим произвольный «красивый» (n+1)-угольник и докажем, используя предположение индукции, что его можно разрезать некоторыми диагоналями на «красивые» треугольники. Обозначим через А 1 , А 2 , А 3 , … А n , А n+1 – последовательные вершины (n+1)-угольника. Если в какой-либо из трёх цветов окрашена лишь одна вершина (n+1)-угольника, то, соединив эту вершину диагоналями со всеми не соседними с ней вершинами, получим необходимое разбиение (n+1)-угольника на «красивые» треугольники.

Если в каждый из трёх цветов окрашены не менее двух вершин (n+1)-угольника, то обозначим цифрой 1 цвет вершины А 1 , а цифрой 2 цвет вершины А 2 . Пусть k – такой наименьший номер, что вершина А k окрашена в третий цвет. Понятно, что k > 2. Отсечём от (n+1)-угольника диагональю А k–2 А k треугольник А k–2 А k–1 А k . В соответствии с выбором числа k все вершины этого треугольника окрашены в три разных цвета, то есть этот треугольник «красивый». Выпуклый n-угольник А 1 А 2 … А k–2 А k А k+1 … А n+1 , который остался, также, в силу индуктивного предположения, будет «красивым», а значит разбивается на «красивые» треугольники, что и требовалось доказать.

8. Доказать, что в выпуклом n-угольнике нельзя выбрать больше n диагоналей так, чтобы любые две из них имели общую точку.

Проведём доказательство методом математической индукции.

Докажем более общее утверждение: в выпуклом n-угольнике нельзя выбрать больше n сторон и диагоналей так, чтобы любые две из них имели общую точку. При n = 3 утверждение очевидно. Допустим, что это утверждение верно для произвольного n-угольника и, используя это, докажем его справедливость для произвольного (n+1)-угольника.

Допустим, что для (n+1)-угольника это утверждение неверно. Если из каждой вершины (n+1)-угольника выходит не больше двух выбранных сторон или диагоналей, то всего их выбрано не больше чем n+1. Поэтому из некоторой вершины А выходит хотя бы три выбранных стороны или диагонали AB, AC, AD. Пусть АС лежит между АВ и AD. Поскольку любая сторона или диагональ, которая выходит из точки С и отличная от СА, не может одновременно пересекать АВ и AD, то из точки С выходит только одна выбранная диагональ СА.

Отбросив точку С вместе с диагональю СА, получим выпуклый n-угольник, в котором выбрано больше n сторон и диагоналей, любые две из которых имеют общую точку. Таким образом, приходим к противоречию с предположением, что утверждение верно для произвольного выпуклого n-угольника.

Итак, для (n+1)-угольника утверждение верно. В соответствии с принципом математической индукции утверждение верно для любого выпуклого n-угольника.

9. В плоскости проведено n прямых, из которых никакие две не параллельны и никакие три не проходят через одну точку. На сколько частей разбивают плоскость эти прямые.

С помощью элементарных рисунков легко убедится в том, что одна прямая разбивает плоскость на 2 части, две прямые – на 4 части, три прямые – на 7 частей, четыре прямые – на 11 частей.

Обозначим через N(n) число частей, на которые n прямых разбивают плоскость. Можно заметить, что

N(2)=N(1)+2=2+2,

N(3)=N(2)+3=2+2+3,

N(4)=N(3)+4=2+2+3+4.

Естественно предположить, что

N(n)=N(n–1)+n=2+2+3+4+5+…+n,

или, как легко установить, воспользовавшись формулой суммы n первых членов арифметической прогрессии,

N(n)=1+n(n+1)/2.

Докажем справедливость этой формулы методом математической индукции.

Для n=1 формула уже проверена.

Сделав предположение индукции, рассмотрим k+1 прямых, удовлетворяющих условию задачи. Выделим из них произвольным образом k прямых. По предположению индукции они разобьют плоскость на 1+ k(k+1)/2 частей. Оставшаяся (k+1)-я прямая разобьётся выделенными k прямыми на k+1 частей и, следовательно, пройдёт по (k+1)-й части, на которые плоскость уже была разбита, и каждую из этих частей разделит на 2 части, то есть добавится ещё k+1 часть. Итак,

N(k+1)=N(k)+k+1=1+ k(k+1)/2+k+1=1+(k+1)(k+2)/2,

что и требовалось доказать.

10. В выражении х 1:х 2: … :х n для указания порядка действий расставляются скобки и результат записывается в виде дроби:

(при этом каждая из букв х 1 , х 2 , … , х n стоит либо в числителе дроби, либо в знаменателе). Сколько различных выражения можно таким образом получить при всевозможных способах расстановки скобок?

Прежде всего ясно, что в полученной дроби х 1 будет стоять в числителе. Почти столь же очевидно, что х 2 окажется в знаменателе при любой расстановке скобок (знак деления, стоящий перед х 2 , относится либо к самому х 2 , либо к какому-либо выражению, содержащему х 2 в числителе).

Можно предположить, что все остальные буквы х 3 , х 4 , … , х n могут располагаться в числителе или знаменателе совершенно произвольным образом. Отсюда следует, что всего можно получить 2 n–2 дробей: каждая из n–2 букв х 3 , х 4 , … , х n может оказаться независимо от остальных в числителе или знаменателе.

Докажем это утверждение по индукции.

При n=3 можно получить 2 дроби:

так что утверждение справедливо.

Предположим, что оно справедливо при n=k и докажем его для n=k+1.

Пусть выражение х 1:х 2: … :х k после некоторой расстановки скобок записывается в виде некоторой дроби Q. Если в это выражение вместо х k подставить х k:х k+1 , то х k окажется там же, где и было в дроби Q, а х k+1 будет стоять не там, где стояло х k (если х k было в знаменателе, то х k+1 окажется в числителе и наоборот).

Теперь докажем, что можно добавить х k+1 туда же, где стоит х k . В дроби Q после расстановки скобок обязательно будет выражение вида q:х k , где q – буква х k–1 или некоторое выражение в скобках. Заменив q:х k выражением (q:х k):х k+1 =q:(х k ·х k+1), мы получим, очевидно, ту же самую дробь Q, где вместо х k стоит х k ·х k+1 .

Таким образом, количество всевозможных дробей в случае n=k+1 в 2 раза больше чем в случае n=k и равно 2 k–2 ·2=2 (k+1)–2 . Тем самым утверждение доказано.

Ответ: 2 n–2 дробей.

Задачи без решений

1. Доказать, что при любом натуральном n:

а) число 5 n –3 n +2n делится на 4;

б) число n 3 +11n делится на 6;

в) число 7 n +3n–1 делится на 9;

г) число 6 2n +19 n –2 n+1 делится на 17;

д) число 7 n+1 +8 2n–1 делится на 19;

е) число 2 2n–1 –9n 2 +21n–14 делится на 27.

2. Докажите, что (n+1)·(n+2)· … ·(n+n) = 2 n ·1·3·5·…·(2n–1).

3. Доказать неравенство |sin nx| n|sin x| для любого натурального n.

4. Найдите натуральные числа a, b, c, которые не делятся на 10 и такие, что при любом натуральном n числа a n + b n и c n имеют одинаковые две последние цифры.

5. Доказать, что если n точек не лежат на одной прямой, то среди прямых, которые их соединяют, не менее чем n различных.

Вступление

Основная часть

1. Полная и неполная индукция

2. Принцип математической индукции

3. Метод математической индукции

4. Решение примеров

5. Равенства

6. Деление чисел

7. Неравенства

Заключение

Список использованной литературы

Вступление

В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом – частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному.

Метод математической индукции можно сравнить с прогрессом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно.

Хотя и выросла область применения метода математической индукции, в школьной программе ему отводится мало времени. Ну, скажите, что полезного человеку принесут те два-три урока, за которые он услышит пять слов теории, решит пять примитивных задач, и, в результате получит пятёрку за то, что он ничего не знает.

А ведь это так важно - уметь размышлять индуктивно.

Основная часть

По своему первоначальному смыслу слово “индукция” применяется к рассуждениям, при помощи которых получают общие выводы, опираясь на ряд частных утверждений. Простейшим методом рассуждений такого рода является полная индукция. Вот пример подобного рассуждения.

Пусть требуется установить, что каждое натуральное чётное число n в пределах 4< n < 20 представимо в виде суммы двух простых чисел. Для этого возьмём все такие числа и выпишем соответствующие разложения:

4=2+2; 6=3+3; 8=5+3; 10=7+3; 12=7+5;

14=7+7; 16=11+5; 18=13+5; 20=13+7.

Эти девять равенств показывают, что каждое из интересующих нас чисел действительно представляется в виде суммы двух простых слагаемых.

Таким образом, полная индукция заключается в том, что общее утверждение доказывается по отдельности в каждом из конечного числа возможных случаев.

Иногда общий результат удаётся предугадать после рассмотрения не всех, а достаточно большого числа частных случаев (так называемая неполная индукция).

Результат, полученный неполной индукцией, остается, однако, лишь гипотезой, пока он не доказан точным математическим рассуждением, охватывающим все частные случаи. Иными словами, неполная индукция в математике не считается законным методом строгого доказательства, но является мощным методом открытия новых истин.

Пусть, например, требуется найти сумму первых n последовательных нечётных чисел. Рассмотрим частные случаи:

1+3+5+7+9=25=5 2

После рассмотрения этих нескольких частных случаев напрашивается следующий общий вывод:

1+3+5+…+(2n-1)=n 2

т.е. сумма n первых последовательных нечётных чисел равна n 2

Разумеется, сделанное наблюдение ещё не может служить доказательством справедливости приведённой формулы.

Полная индукция имеет в математике лишь ограниченное применение. Многие интересные математические утверждения охватывают бесконечное число частных случаев, а провести проверку для бесконечного числа случаев мы не в состоянии. Неполная же индукция часто приводит к ошибочным результатам.

Во многих случаях выход из такого рода затруднений заключается в обращении к особому методу рассуждений, называемому методом математической индукции. Он заключается в следующем.

Пусть нужно доказать справедливость некоторого утверждения для любого натурального числа n (например нужно доказать, что сумма первых n нечётных чисел равна n 2). Непосредственная проверка этого утверждения для каждого значения n невозможна, поскольку множество натуральных чисел бесконечно. Чтобы доказать это утверждение, проверяют сначала его справедливость для n=1. Затем доказывают, что при любом натуральном значении k из справедливости рассматриваемого утверждения при n=k вытекает его справедливость и при n=k+1.

Тогда утверждение считается доказанным для всех n. В самом деле, утверждение справедливо при n=1. Но тогда оно справедливо и для следующего числа n=1+1=2. Из справедливости утверждения для n=2 вытекает его справедливость для n=2+

1=3. Отсюда следует справедливость утверждения для n=4 и т.д. Ясно, что, в конце концов, мы дойдём до любого натурального числа n. Значит, утверждение верно для любого n.

Обобщая сказанное, сформулируем следующий общий принцип.

Принцип математической индукции.

Если предложение А( n ), зависящее от натурального числа n , истинно для n =1 и из того, что оно истинно для n=k (где k -любое натуральное число), следует, что оно истинно и для следующего числа n=k+1 , то предположение А( n ) истинно для любого натурального числа n .

В ряде случаев бывает нужно доказать справедливость некоторого утверждения не для всех натуральных чисел, а лишь для n>p, где p-фиксированное натуральное число. В этом случае принцип математической индукции формулируется следующим образом. Если предложение А( n ) истинно при n=p и если А( k ) Þ А( k+1) для любого k>p, то предложение А( n) истинно для любого n>p.

Доказательство по методу математической индукции проводиться следующим образом. Сначала доказываемое утверждение проверяется для n=1, т.е. устанавливается истинность высказывания А(1). Эту часть доказательства называют базисом индукции. Затем следует часть доказательства, называемая индукционным шагом. В этой части доказывают справедливость утверждения для n=k+1 в предположении справедливости утверждения для n=k (предположение индукции), т.е. доказывают, что А(k)ÞA(k+1).

ПРИМЕР 1

Доказать, что 1+3+5+…+(2n-1)=n 2 .

Решение: 1) Имеем n=1=1 2 . Следовательно,

утверждение верно при n=1, т.е. А(1) истинно.

2) Докажем, что А(k)ÞA(k+1).

Пусть k-любое натуральное число и пусть утверж-дение справедливо для n=k, т.е.

1+3+5+…+(2k-1)=k 2 .

Докажем, что тогда утверждение справедливо и для следующего натурального числа n=k+1, т.е. что

1+3+5+…+(2k+1)=(k+1) 2 .

В самом деле,

1+3+5+…+(2k-1)+(2k+1)=k 2 +2k+1=(k+1) 2 .

Итак, А(k)ÞА(k+1). На основании принципа математической индукции заключаем, что предпо-ложение А(n) истинно для любого nÎN.

ПРИМЕР 2

Доказать, что

1+х+х 2 +х 3 +…+х n =(х n+1 -1)/(х-1), где х¹1

Решение: 1) При n=1 получаем

1+х=(х 2 -1)/(х-1)=(х-1)(х+1)/(х-1)=х+1

следовательно, при n=1 формула верна; А(1) ис-тинно.

2) Пусть k-любое натуральное число и пусть формула верна при n=k, т.е.

1+х+х 2 +х 3 +…+х k =(х k+1 -1)/(х-1).

Докажем, что тогда выполняется равенство

1+х+х 2 +х 3 +…+х k +x k+1 =(x k+2 -1)/(х-1).

В самом деле

1+х+х 2 +x 3 +…+х k +x k+1 =(1+x+x 2 +x 3 +…+x k)+x k+1 =

=(x k+1 -1)/(x-1)+x k+1 =(x k+2 -1)/(x-1).

Итак, А(k)ÞA(k+1). На основании принципа математической индукции заключаем, что форму-ла верна для любого натурального числа n.

ПРИМЕР 3

Доказать, что число диагоналей выпуклого n-угольника равно n(n-3)/2.

Решение: 1) При n=3 утверждение спра-


А 3 ведливо, ибо в треугольнике

 А 3 =3(3-3)/2=0 диагоналей;

А 2 А(3) истинно.

2) Предположим, что во всяком

выпуклом k-угольнике имеет-

А 1 ся А k =k(k-3)/2 диагоналей.

А k Докажем, что тогда в выпуклом

(k+1)-угольнике число

диагоналей А k+1 =(k+1)(k-2)/2.

Пусть А 1 А 2 А 3 …A k A k+1 -выпуклый (k+1)-уголь-ник. Проведём в нём диагональ A 1 A k . Чтобы под-считать общее число диагоналей этого (k+1)-уголь-ника нужно подсчитать число диагоналей в k-угольнике A 1 A 2 …A k , прибавить к полученному числу k-2, т.е. число диагоналей (k+1)-угольника, исходящих из вершины А k+1 , и, кроме того, следует учесть диагональ А 1 А k .

Таким образом,

 k+1 = k +(k-2)+1=k(k-3)/2+k-1=(k+1)(k-2)/2.

Итак, А(k)ÞA(k+1). Вследствие принципа математической индукции утверждение верно для любого выпуклого n-угольника.

ПРИМЕР 4

Доказать, что при любом n справедливо утвер-ждение:

1 2 +2 2 +3 2 +…+n 2 =n(n+1)(2n+1)/6.

Решение: 1) Пусть n=1, тогда

Х 1 =1 2 =1(1+1)(2+1)/6=1.

Значит, при n=1 утверждение верно.

2) Предположим, что n=k

Х k =k 2 =k(k+1)(2k+1)/6.

3) Рассмотрим данное утвержде-ние при n=k+1

X k+1 =(k+1)(k+2)(2k+3)/6.

X k+1 =1 2 +2 2 +3 2 +…+k 2 +(k+1) 2 =k(k+1)(2k+1)/6+ +(k+1) 2 =(k(k+1)(2k+1)+6(k+1) 2)/6=(k+1)(k(2k+1)+

6(k+1))/6=(k+1)(2k 2 +7k+6)/6=(k+1)(2(k+3/2)(k+

2))/6=(k+1)(k+2)(2k+3)/6.

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математиче-ской индукции, утверждение верно для любого на-турального n.

ПРИМЕР 5

Доказать, что для любого натурального n спра-ведливо равенство:

1 3 +2 3 +3 3 +…+n 3 =n 2 (n+1) 2 /4.

Решение: 1) Пусть n=1.

Тогда Х 1 =1 3 =1 2 (1+1) 2 /4=1.

Мы видим, что при n=1 утверждение верно.

2) Предположим, что равенство верно при n=k