Основные узлы установки и их назначение уэцн. Обозначение уэцн отечественного производства Подземное оборудование уэцн

Установки погружных центробежных насосов в модульном исполнении УЭЦНМ и УЭЦНМК предназначены для откачки из нефтяных скважин , в том числе и наклонных, пластовой жидкости, содержащей нефть, воду, газ, механические примеси.

Установки имеют два исполнения -

  • § обычное
  • § коррозионно-стойкое.

Пример условного обозначения установки

  • § при заказе: УЭЦНМ5-125-1200 ВК02 ТУ 26-06-1486 - 87,
  • § при переписке и в технической документации: УЭЦНМ5-125-1200 ТУ 26-06-1486 - 87,

где У- установка; Э - привод от погружного двигателя; Ц - центробежный; Н - насос; М - модульный; 5 - группа насоса; 125 - подача, м 3 /сут: 1200 - напор, м; ВК - вариант комплектации; 02 - порядковый номер варианта комплектации по ТУ.

Для установок коррозионностойкого исполнения перед обозначением группы насоса добавляется буква «К».

Показатели назначения по перекачиваемым средам следующие :

  • § среда - пластовая жидкость (смесь нефти, попутной воды и нефтяного газа);
  • § максимальная кинематическая вязкость однофазной жидкости, при которой обеспечивается работа насоса без изменения напора и к. п. д. - 1 мм 2 /с;
  • § водородный показатель попутной воды рН 6,0 - 8,5;
  • § максимальное массовое содержание твердых частиц - 0,01 % (0,1 г/л);
  • § микротвердость частиц - не более 5 баллов по Моосу;
  • § максимальное содержание попутной воды - 99%;
  • § максимальное содержание свободного газа у основания двигателя - 25%, для установок с насосными модулями-газосепараторами (по вариантам комплектации) - 55 %, при этом соотношение в откачиваемой жидкости нефти и воды регламентируется универсальной методикой подбора УЭЦН к нефтяным скважинам (УМП ЭЦН-79);

максимальная концентрация сероводорода : для установок обычного исполнения - 0,001% (0,01 г/л); для установок коррозионностойкого исполнения - 0,125% (1,25 г/л);

температура перекачиваемой жидкости в зоне работы погружного агрегата - не более 90 °С.

Для установок, укомплектованных кабельными линиями К43, в которых взамен удлинителя с теплостойким кабелем марки КФСБ используется удлинитель с кабелем марки КПБП, температуры должны быть не более:

  • § для УЭЦНМ5 и УЭЦНМК5 с двигателем мощностью 32 кВт - 70 °С;
  • § для УЭЦНМ5, 5А и УЭЦНМК5, 5А с двигателями мощностью 45 - 125 кВт - 75 °С;
  • § для УЭЦНМ6 и УЭЦНМК6 с двигателями мощностью 90 - 250 кВт - 80 °С.

Лито-фациальная модель пласта Ю13 Крапивинского месторождения Примечание . Внутренний диаметр колонны обсадных труб не менее и поперечный габарит насосной установки с кабелем не более соответственно: для установок УЭЦНМ5 - 121,7 и 112 мм: для УЭЦНМ5А - 130 и 124 мм; для УЭЦНМ6 с подачей до 500 м 3 /сут (включительно) - 144,3 и 137 мм, с подачей свыше 500 м 3 сут - 148,3 и 140,5 мм.

Установки УЭЦНМ и УЭЦНМК (рис. 1) состоят из

  • § погружного насосного агрегата, кабеля в сборе 6,
  • § наземного электрооборудования - трансформаторной комплектной подстанции (индивидуальной КТППН или кустовой КТППНКС) 5.

Вместо подстанции можно использовать трансформатор и комплектное устройство.

Насосный агрегат, состоящий из погружного центробежного насоса 7 и двигателя 8 (электродвигатель с гидрозащитой), спускается в скважину на колонне насосно-компрессорных труб 4. Насосный агрегат откачивает пластовую жидкость из скважины и подает ее на поверхность по колонне НКТ.

Кабель, обеспечивающий подвод электроэнергии к электродвигателю, крепится к гидрозащите, насосу и насосно-компрессорным трубам металлическими поясами (клямсами) 3, входящими в состав насоса.

Комплектная трансформаторная подстанция (трансформатор и комплектное устройство) преобразует напряжение промысловой сети до значения оптимального напряжения на зажимах электродвигателя с учетом потерь напряжения в кабеле и обеспечивает управление работой насосного агрегата установки и ее защиту при аномальных режимах.

Обратный клапан 1 предназначен для предотвращения обратного вращения (турбинный режим) ротора насоса под воздействием столба жидкости в колонне НКТ при остановках и облегчения, тем самым, повторного запуска насосного агрегата. Обратный клапан ввинчен в модуль - головку насоса, а спускной - в корпус обратного клапана.

Спускной клапан 2 служит для слива жидкости из колонны НКТ при подъеме насосного агрегата из скважины.

Допускается устанавливать клапаны выше насоса в зависимости от газосодержания у сетки входного модуля насоса. При этом клапаны должны располагаться ниже сростки основного кабеля с удлинителем, так как в противном случае поперечный габарит насосного агрегата будет превышать допустимый.

Для откачивания пластовой жидкости, содержащей свыше 25 - до 55% (по объему) свободного газа у приемной сетки входного модуля, к насосу подключают насосный модуль - газосепаратор .

Двигатель - асинхронный погружной, трехфазный, короткозамкнутый, двухполюсный, маслонаполненный.

Установки могут комплектоваться двигателями типа 1ПЭД по ТУ 16-652.031 - 87, оснащенными системой контроля температуры и давления пластовой жидкости.

При этом установки должны комплектоваться устройством комплектным ШГС 5805-49ТЗУ1.

Соединение сборочных единиц насосного агрегата - фланцевое (на болтах и шпильках), валов сборочных единиц - при помощи шлицевых муфт.

Соединение кабеля в сборе с двигателем осуществляется при помощи муфты кабельного ввода.

Подключательный выносной пункт предназначен для предупреждения прохождения газа по кабелю в КТППН (КТППНКС) или комплектное устройство.

Оборудование устья скважины обеспечивает подвеску колонны НКТ с насосным агрегатом и кабелем в сборе на фланце обсадной колонны, герметизацию затрубного пространства, отвод пластовой жидкости в выкидной трубопровод.

Насос - погружной центробежный модульный. Рисунок 2.

Погружной центробежный модульный насос (в дальнейшем именуемый «насос») - многоступенчатый вертикального исполнения. Насос изготовляют в двух исполнениях: обычном ЭЦНМ и коррозионностойком ЭЦНМК.

Насос состоит из входного модуля, модуля-секции (модулей-секций), модуля-головки, обратного и спускного клапанов (рис. 2). Допускается уменьшение числа модулей-секций в насосе при соответствующем укомплектовании погружного агрегата двигателем необходимой мощности.

Для откачивания пластовой жидкости, содержащей у сетки входного модуля насоса свыше 25 % (по объему) свободного газа, к насосу следует подсоединить насосный модуль - газосепаратор (рис..3). устанавливается между входным модулем и модулем-секцией.

Наиболее известны две конструкции газосепараторов:

газосепараторы с противотоком;

§ центробежные или роторные газосепараторы.

Для первого типа, применяемого в некоторых насосах Reda, при попадании жидкости в газосепаратор, она вынуждена резко менять направление движения. Некоторые газовые пузырьки сепарируются уже на входе в насос. Другая часть, попадая в газосепаратор, поднимается внутри его и выходит из корпуса. отечественных установках, а также насосах фирмы Centrilift и Reda, используются роторные газосепараторы, которые работают аналогично центрифуге. Лопатки центрифуги, вращающиеся с частотой 3500 об/мин, вытесняют более тяжелые жидкости на периферию, и далее через переходной канал вверх в насос, тогда как более легкая жидкость (пар) остается около центра и выходит через переходной канал и выпускные каналы обратно в скважину.

Рис.3. Газосепаратор:

1 - головка; 2 - втулка радиального подшипника; 3 - вал: 4 - сепаратор; 5 - направляющие аппараты: 6 - рабочее колесо; 7 - корпус; 8 - шнек; 9 - основание

Соединение модулей между собой и входного модуля с двигателем - фланцевое. Соединения (кроме соединений входного модуля с двигателем и входного модуля с газосепаратором) уплотняются резиновыми кольцами.

Соединение валов модулей-секций между собой, модуля-секции с валом входного модуля, вала входного модуля с валом гидрозащиты двигателя осуществляется шлицевыми муфтами.

Соединение валов газосепаратора, модуля-секции н входного модуля между собой также осуществляется при помощи шлицевых муфт.

Валы модулей-секций всех групп насосов, имеющих одинаковые длины корпусов (2, 3 и 5м), унифицированы по длине. Валы модулей-секций и входных модулей для насосов обычного исполнения изготовляют из калиброванной коррозионно-стойкой высокопрочной стали марки ОЗХ14Н7В и имеют на торце маркировку «НЖ», для насосов повышенной коррозионностойкости - из калиброванных прутков из сплава Н65Д29ЮТ-ИШ К-монель и имеют на торцах маркировку «М».

Рабочие колеса и направляющие аппараты насосов обычного исполнения изготовляют из модифицированного серого чугуна, насосов коррозионностойкого исполнения - из модифицированного чугуна ЧН16Д7ГХШ типа «нирезист». Рабочие колеса насосов обычного исполнения можно изготовлять из радиационно-модифицированного полиамида.

Модуль-головка состоит из корпуса, с одной стороны которого имеется внутренняя коническая резьба для подсоединения обратного клапана (насосно-компрессорной трубы), с другой стороны - фланец для подсоединения к модулю-секции двух ребер и резинового кольца. Ребра прикреплены к корпусу модуля-головки болтом с гайкой и пружинной шайбой. Резиновое кольцо герметизирует соединение модуля-головки с модулем-секцией.

Модули-головки насосов группы 5 и 5А имеют резьбу муфты насосно-компрессорной гладкой трубы 73 ГОСТ 633 - 80.

Модуль-головка насосов группы 6 имеет два исполнения: с резьбой муфты 73 и 89 ГОСТ 633 - 80.

Модуль-головка с резьбой 73 применяется в насосах с номинальной подачей до 800 м 3 /сут. с резьбой 89 - более 800 м 3 сут.

Модуль-секция состоит из корпуса, вала, пакета ступеней (рабочих колес и направляющих аппаратов), верхнего подшипника, нижнего подшипника, верхней осевой опоры, головки, основания, двух ребер и резиновых колец. Соединение модулей-секций между собой, а также резьбовые соединения и зазор между корпусом и пакетом ступеней герметизируются резиновыми кольцами.

Ребра предназначены для защиты плоского кабеля с муфтой от механических повреждений о стенку обсадной колонны при спуске и подъеме насосного агрегата. Ребра прикреплены к основанию модуля-секции болтом с гайкой и пружинной шайбой.

Грань головки модуля-секции, имеющая минимальное угловое смещение относительно поверхности основания между ребрами, помечена пятном краски для ориентирования относительно ребер другого модуля-секции при монтаже на скважине.

Модули-секции поставляются опломбированными гарантийными пломбами клеймом предприятия-изготовителя на паяных швах.

Входной модуль состоит из основания с отверстиями для прохода пластовой жидкости, подшипниковых втулок и сетки, вала с защитными втулками и шлицевой муфты для соединения вала модуля с валом гидрозащиты.

При помощи шпилек модуль верхним концом подсоединяется к модулю-секции. Нижний конец входного модуля присоединяется к гидрозащите двигателя.

Входной модуль для насосов группы 6 имеет два исполнения: одно - с валом диаметром 25 мм - для насосов с подачами 250, 320, 500 и 800 м 3 /сут, другое - с валом диаметром 28 мм - для насосов с подачами 1000, 1250 м 3 /сут.

Обратные клапаны насосов групп 5 и 5А, рассчитанных на любую подачу, и группы 6 с подачей до 800 м 3 /сут включительно конструктивно одинаковы и имеют резьбы муфты гладкой насосно-компрессорной трубы 73 ГОСТ 633 - 80. Обратный клапан для насосов группы 6 с подачей свыше 800 м 3 /сут имеет резьбы муфты гладкой насосно-компрессорной трубы 89 ГОСТ 633 - 80.

Спускные клапаны имеют такие же исполнения по резьбам, как обратные.

Пояс для крепления кабеля состоит из стальной пряжки и закрепленной на ней стальной полосы.

ПОГРУЖНЫЕ ДВИГАТЕЛИ

Погружные двигатели состоят из электродвигателя (рис. 4) и гидрозащиты (рис. 5) .

Двигатели трехфазные асинхронные короткозамкнутые двухполюсные погружные унифицированной серии ПЭД в нормальном и коррозионностойком исполнениях, климатического исполнения В, категории размещения 5 работают от сети переменного тока частотой 50 Гц и используются в качестве привода погружных центробежных насосов в модульном исполнении для откачки пластовой жидкости из нефтяных скважин.

Двигатели предназначены для работы в среде пластовой жидкости (смесь нефти и попутной воды в любых пропорциях) с температурой до 110 °С, содержащей:

механические примеси с относительной твердостью частиц не более 5 баллов по шкале Мооса - не более 0,5 г/л;

сероводород : для нормального исполнения - не более 0,01 г/л; для коррозионностойкого исполнения - не более. 1,25 г/л;

свободный газ (по объему) - не более 55%. Гидростатическое давление в зоне работы двигателя не более 25 МПа.

Допустимые отклонения от номинальных значений питающей сети:

по напряжению - от минус 5% до плюс 10%; по частоте переменного тока - ±0,2 Гц; по току - не выше номинального на всех режимах работы, включая вывод скважины на режим.

В шифре двигателя ПЭДУСК-125-117ДВ5 ТУ 16-652.029 - 86 приняты следующие обозначения: ПЭДУ - погружной электродвигатель унифицированный; С - секционный (отсутствие буквы - несекционный); К - коррозионностойкий (отсутствие буквы - нормальное);125 - мощность, кВт; 117 - диаметр корпуса, мм; Д - шифр модернизации гидрозащиты (отсутствие буквы - основная модель); В5 - климатическое исполнение и категория размещения.

Рис. 4.

1 - крышка: 2 - головка; 3 - пята: 4 - подпятник; 5 - пробка: 6 - обмотка статора; 7 - втулка; 8 - ротор; 9 - статор; 10 - магнит; 11 - фильтр; I2 - колодка; 13 - кабель с наконечником; 14 - кольцо; 15 - кольцо уплотнительное; 16 - корпус: 17, 18 - пробка

В шифре электродвигателя ЭДК45-117В приняты следующие обозначения: ЭД - электродвигатель; К - коррозионностойкий (отсутствие буквы - нормальное исполнение); 45 - мощность, кВт; 117 - диаметр корпуса, мм; В - верхняя секция (отсутствие буквы - несекционный, С - средняя секция, Н - нижняя секция).

В шифре гидрозащиты ПК92Д приняты следующие обозначения: П - протектор; К - коррозионностойкая (отсутствие буквы - исполнение нормальное); 92 - диаметр корпуса в мм; Д - модернизация с диафрагмой (отсутствие буквы - основная модель с барьерной жидкостью).

Пуск, управление работой двигателями и его защита при аварийных режимах осуществляются специальными комплектными устройствами.

Пуск, управление работой и защита двигателя мощностью 360 кВт с диаметром корпуса 130 мм осуществляются комплектным тиристорным преобразователем.

Электродвигатели заполняются маслом МА-ПЭД с пробивным напряжением не менее 30 кВ.

Предельная длительно допускаемая температура обмотки статора электродвигателей (по сопротивлению для электродвигателей диаметром корпуса 103 мм) равна 170 °С, а остальных электродвигателей - 160 °С.

Двигатель состоит из одного или нескольких электродвигателей (верхнего, среднего и нижнего мощностью от 63 до 360 кВт) и протектора.

Электродвигатель (см. рис. 4) состоит из статора, ротора, головки с токовводом, корпуса.

Статор выполнен из трубы, в которую запрессован магнитопровод, изготовленный из листовой электротехнической стали.

Обмотка статора - однослойная протяжная катушечная. Фазы обмотки соединены в звезду.

Ротор короткозамкнутый, многосекционный. В состав ротора входят вал, сердечники, радиальные опоры (подшипники скольжения), втулка. Вал пустотелый, изготовлен из высокопрочной стали, со специальной отделкой поверхности. В центральное отверстие вала ротора верхнего и среднего электродвигателей ввинчены две специальные гайки, между которыми помещен шарик, перекрывающий слив масла из электродвигателя при монтаже.

Сердечники выполнены из листовой электротехнической стали. В пазы сердечников уложены медные стержни, сваренные по торцам с короткозамыкающими кольцами. Сердечники набираются на вал, чередуясь с радиальными подшипниками. Набор сердечников на валу зафиксирован с одной стороны разрезным вкладышем, а с другой - пружинным кольцом.

Втулка служит для смещения радиальных подшипников ротора при ремонте электродвигателя.

Головка представляет собой сборочную единицу, монтируемую в верхней части электродвигателя (над статором). В головке расположен узел упорного подшипника, состоящий из пяты и подпятника, крайние радиальные подшипники ротора, узел токоввода (для несекционных электродвигателей) или узел электрического соединения электродвигателей (для секционных электродвигателей).

Токоввод - изоляционная колодка, в пазы которой вставлены кабели с наконечниками.

Узел электрического соединения обмоток верхнего, среднего и нижнего электродвигателей состоит из выводных кабелей с наконечниками и изоляторов, закрепленных в головках и корпусах торцов секционирования.

Отверстие под пробкой служит для закачки масла в протектор при монтаже двигателя.

В корпусе, находящемся в нижней части электродвигателя (под статором), расположены радиальный подшипник ротора и пробки. Через отверстия под пробку проводят закачку и слив масла в электродвигатель.

В этом корпусе электродвигателей имеется фильтр для очистки масла.

Термоманометрическая система ТМС-З предназначена для контроля некоторых технологических параметров скважин, оборудованных УЭЦН (давление, температура, вибрация) и защиты погружных агрегатов от аномальных режимов работы (перегрев электродвигателя или снижение давления жидкости на приеме насоса ниже допустимого).

Система ТМС-З состоит из скважинного преобразователя, трансформирующего давление и температуру в частотно-манипулированный электрический сигнал, и наземного прибора, осуществляющего функции блока питания, усилителя-формирователя сигналов и устройства управления режимом работы погружным электронасосом по давлению и температуре.

Скважинный преобразователь давления и температуры (ПДТ) выполнен в виде герметичного цилиндрического контейнера, размещаемого в нижней части электродвигателя и подключенного к нулевой точке его статорной обмотки.

Наземный прибор, устанавливаемый в комплектное устройство ШГС, обеспечивает формирование сигналов на ее отключение и выключение насоса по давлению и температуре.

В качестве линии связи и энергопитания ПДТ используется силовая сеть питания погружного электродвигателя.

ГИДРОЗАЩИТА ПОГРУЖНЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ

Гидрозащита предназначена для предотвращения проникновения пластовой жидкости во внутреннюю полость электродвигателя, компенсации изменения объема масла во внутренней полости от температуры электродвигателя и передачи крутящего момента от вала электродвигателя к валу насоса.

Разработано два варианта конструкций гидрозащит для двигателей унифицированной серии:

  • § открытого типа - П92; ПК92; П114; ПК114 и
  • § закрытого типа - П92Д; ПК92Д; (с диафрагмой) П114Д; ПК114Д.

Гидрозащиту выпускают

  • § обычного и
  • § коррозионностойкого (буква К. - в обозначении) исполнений.

В обычном исполнении гидрозащита покрыта грунтовкой ФЛ-ОЗ-К ГОСТ 9109 - 81. В коррозионностойком исполнении гидрозащита имеет вал из К-монеля и покрыта эмалью ЭП-525, IV, 7/2 110 °С.

Основным типом гидрозащиты для комплектации ПЭД принята гидрозащита открытого типа. Гидрозащита открытого типа требует применения специальной барьерной жидкости плотностью до 2 г/см 3 , обладающей физико-химическими свойствами, которые исключают ее перемешивание с пластовой жидкостью скважины и маслом в полости электродвигателя.


Рис. 5. Гидрозащита открытого (а) и закрытого (б) типов:

А - верхняя камера; Б - нижняя камера; 1 - головка; 2 - верхний ниппель: 3 - корпус; 4 - средний ниппель; 5 - нижний ниппель; 6 - основание; 7 - вал; 8 - торцовое уплотнение; 9 - соединительная трубка; 10 - диафрагма

Конструкция гидрозащиты открытого типа представлена на рис. 5, а, закрытого типа - на рис. 5, б.

Верхняя камера заполнена барьерной жидкостью, нижняя - диэлектрическим маслом. Камеры сообщены трубкой. Изменения объемов жидкого диэлектрика в двигателе компенсируются за счет перетока барьерной жидкости в гидрозащите из одной камеры в другую.

В гидрозащитах закрытого типа применяются резиновые диафрагмы, их эластичность компенсирует изменение объема жидкого диэлектрика в двигателе.

В настоящее время функции станции управления выполняют комплектные устройства семейства «ЭЛЕКТОН».

УСТРОЙСТВА КОМПЛЕКТНЫЕ СЕРИИ «ЭЛЕКТОН 04»

Станция обеспечивает следующие защиты и регулирование их уставок:

  • 1) отключение и запрещение включения электродвигателя при напряжении питающей сети выше или ниже заданных значений;
  • 2) отключение и запрещение включения электродвигателя при превышении выбранной уставки дисбаланса напряжения питающей сети;
  • 3) отключение электродвигателя при превышении выбранной уставки дисбаланса токов электродвигателя;
  • 4) отключение электродвигателя при недогрузке по активной составляющей тока с выбором минимального тока фазы (по фактической загрузке). При этом уставка выбирается относительно номинального активного тока;
  • 5) отключение электродвигателя при перегрузке любой из фаз с выбором максимального тока фазы по регулируемой ампер-секундной характеристике посредством раздельного выбора желаемых уставок по току и времени перегрузки;
  • 6) отключение и запрещение включения электродвигателя при снижении сопротивления изоляции силовой цепи ниже заданного значения;
  • 7) запрещение включения электродвигателя при турбинном вращении с выбором допустимой частоты вращения;
  • 8) отключение электродвигателя по максимальной токовой защите (МТЗ);
  • 9) запрещение включения электродвигателя при восстановлении напряжения питающей сети с неправильным чередованием фаз;
  • 10) отключение электродвигателя по сигналу контактного манометра в зависимости от давления в трубопроводе;
  • 11) отключение электродвигателя при давлении на приеме насоса выше или ниже заданного значения (при подключении системы ТМС);
  • 12) отключение электродвигателя при температуре выше заданного значения (при подключении системы ТМС);
  • 13) отключение электродвигателя по логическому сигналу на дополнительном цифровом входе;
  • 14) предотвращение сброса защит, изменения режимов работы, включения - отключения защит и изменения уставок без ввода индивидуального пароля;

Станция обеспечивает следующие функции:

  • 1) включение и отключение электродвигателя либо в "ручном" режиме непосредственно оператором, либо в "автоматическом" режиме;
  • 2) работа по программе с отдельно задаваемыми временами работы и остановки;
  • 3) автоматическое включение электродвигателя с заданной задержкой времени после подачи напряжения питания, либо восстановлении напряжения питания в соответствии с нормой;
  • 4) регулируемая задержка отключения отдельно для каждой защиты (кроме МТЗ и защиты по низкому сопротивлению изоляции);
  • 5) регулируемая задержка активации защит сразу после пуска для каждой защиты (кроме МТЗ и защиты по низкому сопротивлению изоляции);
  • 6) регулируемая задержка АПВ отдельно после каждой защиты (кроме МТЗ, защит по низкому сопротивлению изоляции, по турбинному вращению и);
  • 7) возможность выбора режима с АПВ или с блокировкой АПВ после срабатывания отдельно каждой защиты (кроме МТЗ, защит по низкому сопротивлению изоляции и по турбинному вращению);
  • 8) возможность выбора активного и не активного состояния защит отдельно для каждой защиты;
  • 9) блокировка АПВ после отключения по защите от недогрузки при превышении заданного количества разрешенных повторных пусков за заданный интервал времени;
  • 10) блокировка АПВ после отключения по защите от перегрузки при превышении заданного количества разрешенных повторных пусков за заданный интервал времени;
  • 11) блокировка АПВ после отключения другими защитами (кроме защит от недогрузки) при превышении заданного количества разрешенных повторных пусков за заданный интервал времени;
  • 12) измерение текущего значения сопротивления изоляции силовой цепи в диапазоне 1кОм - 10 мОм;
  • 13) измерение текущего коэффициента мощности (cos);
  • 14) измерение текущего значения фактической загрузки двигателя;
  • 15) измерение текущего значения частоты вращения электродвигателя при турбинном вращении;
  • 16) определение порядка чередования фаз напряжения питающей сети (АВС или СВА);
  • 17) отображение в хронологическом порядке 63 последних изменений в состоянии насосной установки с указанием причины и времени включения или отключения электродвигателя;
  • 18) запись в реальном времени в блок памяти информации о причинах включения и отключения электродвигателя с регистрацией текущих линейных значений питающего напряжения, токов фаз электродвигателя, загрузки и сопротивления изоляции в момент отключения электродвигателя, в момент включения, через 5 секунд после включения и во время работы с двумя регулируемыми периодами записи. Накопленная информация может быть считана в портативный компьютер, блок съема информации БСИ либо передана в стандарте RS-232 или RS-485;
  • 19) сохранение заданных параметров работы и накопленной информации при отсутствии напряжения питания;
  • 20) отображение общей наработки насосной установки;
  • 21) отображение общего числа пусков насосной установки;
  • 22) отображение текущих значений времени и даты;
  • 23) световая индикация о состоянии станции ("СТОП", "ОЖИДАНИЕ", "РАБОТА");
  • 24) подключение к станции геофизических и наладочных приборов с помощью розетки 220В.

Кроме того, станция обеспечивает отображение на буквенно-цифровом дисплее следующей информации:

  • 1) состояние установки с указанием причины, времени работы с момента последнего пуска или времени, оставшемся до пуска в минутах и секундах;
  • 2) текущее значение трех линейных питающих напряжений в вольтах;
  • 3) текущее значение токов трех фаз электродвигателя в амперах;
  • 4) текущие значения дисбалансов напряжений и токов в %;
  • 5) текущее значение сопротивления изоляции в кОм;
  • 6) текущее значение коэффициента мощности (cos);
  • 7) текущее значение загрузки двигателя в % от номинального активного тока;
  • 8) текущее значение частоты вращения двигателя при турбинном вращении в Гц;
  • 9) текущее значение давления на приеме насоса во введенных единицах (при подключении системы ТМС);
  • 10) текущее значение температуры двигателя во введенных единицах (при подключении системы ТМС);
  • 11) порядок чередования фаз напряжения питающей сети (АВС или СВА);
  • 12) значение всех установленных параметров и текущих режимов работы.

Устройство БСИ-01 (блок считывания информации) предназначено для съёма и хранения информации с контроллера «Электон», а также для передачи ее на стационарный компьютер. Емкость памяти позволяет хранить информацию с 63 контроллеров. Питание БСИ-01 осуществляется от сетевого адаптера (в контроллерах с зав. №1000 и выше питание блока предусмотрено через разъем RS-232).

Преобразователи частоты семейства ПЧ-ТТПТ-ХХХ-380-50-1-УХЛ1 «Электон 05» предназначены для регулирования частоты вращения трехфазных асинхронных двигателей (АД) с короткозамкнутым или фазным ротором распространенных общепромышленных серий.

СУ обеспечивает работу привода в нескольких режимах:

  • а) ручное управление частотой вращения АД;
  • б) режим самозапуска СУ после восстановления питания;
  • в) плавный разгон асинхронного электродвигателя (АД) с заданным темпом;
  • г) разгон по предельным (заданным) значениям токов фаз АД;
  • д) плавное торможение АД;
  • е) реверсирование АД;
  • ж) торможение АД по предельному значению напряжения в звене постоянного тока;
  • з) режим работы по программе
  • и) считывание телеметрической информации по каналу RS-232;
  • к) работа в режиме ослабления поля при скоростях вращения выше номинальной.

Выходная частота - 1...75 Гц ±0,1 %.

Ток перегрузки - 125 % от номинального в течение 5 минут при времени усреднения 10 минут (режим №2 в соответствии с ГОСТ 24607-88).

Показатели надежности.

Средняя наработка на отказ СУ должна быть не менее 8000 часов.

Дисплей частотного преобразователя представлен на рисунке 6.


Рисунок № 6.

Силовая часть всех СУ построена по единой схеме и представляет собой двухступенчатый преобразователь энергии трехфазного тока сети в энергию трехфазного тока, с регулируемыми напряжением и частотой.

Сетевое напряжение преобразуется в постоянное с помощью выпрямителя (управляемого на тиристорах или неуправляемого на диодах) и фильтруется с помощью LC-фильтра. Постоянное напряжение преобразуется автономным инвертором напряжения (АИН) в трехфазное для питания асинхронного двигателя.

Автономный инвентор напряжения выполнен на основе биполярных транзисторов с изолированным затвором - IGBT , что позволяет применить достаточно гибкий алгоритм управления трехфазным мостом - широтно-импульсную модуляцию (ШИМ). Управляя напряжением на затворах IGBT моста АИН, можно получить на выходах U, V, W трехфазную систему синусоидальных токов с регулируемой частотой и амплитудой.

Импульсы управления IGBT вырабатываются системой управления и поступают на плату драйверов, где формируются двухполярные мощные сигналы для управления затворами транзисторов.

ПОДСТАНЦИИ ТРАНСФОРМАТОРНЫЕ КОМПЛЕКТНЫЕ СЕРИИ КТППНКС.

КТППНКС предназначены для электроснабжения, управления и защиты четырех центробежных электронасосов (ЭЦН) с электродвигателями мощностью 16 - 125 кВт для добычи нефти из кустов скважин, питания до четырех электродвигателей станков-качалок и передвижных токоприемников при выполнении ремонтных работ.

Погружная кабельная линия.

Для подвода электроэнергии к электродвигателю установки погружного насоса применяется кабельная линия, состоящая из основного питающего кабеля и срощенного с ним удлинителя с муфтой кабельного ввода, обеспечивающей герметическое присоединение кабельной линии к электродвигателю. Состав кабельной линии и методы сращивания с удлинителем представлены на рисунках №№ 7, 8 и 9.

В зависимости от назначения в кабельную линию могут входить:

в качестве основного кабеля - круглые кабели марок КПБК, КТЭБК, КФСБК или плоские кабели марок КПБП, КТЭБ, КФСБ;

в качестве удлинителя - плоские кабели марок КПБП или КФСБ;

муфта кабельного ввода круглого типа. Кабели марок КПБК и КПБП с полиэтиленовой изоляцией предназначены для эксплуатации при температурах окружающей среды до +90 °С.

Кабели КПБК и КПБП состоят из медных токопроводящих жил, изолированных в два слоя полиэтиленом высокой плотности и скрученных между собой (в кабелях КПБК) или уложенных в одной плоскости (в кабелях КПБП), а также из подушки и брони.

Кабели марок КТЭБК и КТЭБ с изоляцией из термоэластопласта предназначены для эксплуатации при температурах окружающей среды до +110 °С. Кабели КТЭБК и КТЭБ состоят из медных, изолированных полиамидно-фторопластовой пленкой токопроводящих жил в изоляции и оболочках из термоэластопласта и скрученных между собой (в кабелях КТЭБК) или уложенных в одной плоскости (в кабелях КТЭБ), а также из подушки и брони.

Кабели марок КФСКБ и КФСБ с фторопластовой изоляцией предназначены для эксплуатации при температурах окружающей среды до +160 °С.

Кабели КФСБК и КФСБ состоят из медных, изолированных полиамидно-фторопластовой пленкой токопроводящих жил в изоляции из фторопласта и оболочках из свинца и скрученных между собой (в кабелях КФСБК) или уложенных в одной плоскости (в кабелях КФСБ), а также из подушки и брони.

Рисунки № 8 и 9.

Аннотация (русский язык) Аннотация (английский язык)ВВЕДЕНИЕ 1.АНАЛИЗ СУЩЕСТВУЮЩИХ СХЕМ И КОНСТРУКЦИЙ. 1.1.Назначение и технические данные ЭЦН.1.1.1.Историческая справка о развитии способа добычи. 1.1.2.Состав и комплектность УЭЦН. 1.1.3.Технические характеристики ПЭД. 1.1.4.Основные технические данные кабеля. 1.2. Краткий обзор отечественных схем и установок. 1.2.1.Общие сведения. 1.2.2.Погружной центробежный насос. 1.2.3.Погружные электродвигатели. 1.2.4.Гидрозащита электродвигателя. 1.3.Краткий обзор зарубежных схем и установок. 1.4. Анализ работы УЭЦН. 1.4.1.Анализ фонда скважин. 1.4.2.Анализ фонда ЭЦН. 1.4.3.По подаче. 1.4.4.По напору. 1.5.Краткая характеристика скважин. 1.6.Анализ неисправностей ЭЦН. 1.7.Анализ аварийности фонда УЭЦН.2.ПАТЕНТНАЯ ПРОРАБОТКА. 2.1.Патентная проработка. 2.2.Обоснование выбранного прототипа. 2.3.Суть модернизации. 3. РАСЧЕТНАЯ ЧАСТЬ. 3.1. Расчет ступени ЭЦН. 3.1.1. Расчет рабочего колеса. 3.1.2. Расчет направляющего аппарата. 3.2.Проверочный расчет шпоночного соединения. 3.3.Проверочный расчет шлицевого соединения. 3.4.Расчет вала ЭЦН. 3.5.Прочностной расчет 3.5.1.Прочностной расчет корпуса насоса. 3.5.2.Прочностной расчет винтов страховочной муфты. 3.5.3.Прочностной расчет корпуса полумуфты.4.ЭКОНОМИЧЕСКИЙ ЭФФЕКТ ОТ 5.БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА.6.Литература.7. Приложение 18.Приложение 29.Приложение 310.Приложение 411. Приложение 5.

ВВЕДЕНИЕ

УЭЦН предназначены для откачки пластовой жидкости из нефтяных скважин и используется для форсирования отбора жидкости. Установки относятся к группе изделий II, виду I по ГОСТ 27.003-83.

Климатические исполнение погружного оборудования – 5, наземного электрооборудования – I ГОСТ 15150-69.

Для надежной работы насоса требуется его правильный подбор к данной скважине. При работе скважины постоянно меняются параметры плата, призабойной зоны пласта, свойства отбираемой жидкости: содержание воды, количество попутного газа, количество механических примесей, и как следствие, отсюда идет не доотбор жидкости или работа насоса вхолостую, что сокращает межремонтный период работы насоса. На данный момент делается упор на более надежное оборудование, для увеличения межремонтного периода, и как следствие из этого снижение затрат на подъем жидкости. Этого можно добиться, применяя центробежные УЭЦН вместо ШСН, так как центробежные насосы имеют большой межремонтный период.

Установку УЭЦН можно применять при откачке жидкости, содержащих газ, песок, и коррозионо-активные элементы.

1.АНАЛИЗ СУЩЕСТВУЮЩИХ СХЕМ И КОНСТРУКЦИЙ.

1.1.Назначение и технические данные УЭЦН.

Установки погружных центробежных насосов предназначены для откачки из нефтяных скважин, в том числе и наклонных пластовой жидкости, содержащей нефть, воду и газ, и механические примеси. В зависимости от количества различных компонентов, содержащихся в откачиваемой жидкости, насосы установок имеют исполнение обычное и повышенной корозионно-износостойкости. При работе УЭЦН, где в откачиваемой жидкости концентрация мехпримесей превышает допустимую 0,1 грамм\литр происходит засорение насосов, интенсивной износ рабочих агрегатов. Как следствие, усиливается вибрация, попадание воды в ПЭД по торцевым уплотнениям, происходит перегрев двигателя, что приводит к отказу работы УЭЦН.

Условное обозначение установок:

УЭЦН К 5-180-1200, У 2 ЭЦН И 6-350-1100,

Где У – установка, 2 –вторая модификация, Э – с приводом от погружного электродвигателя, Ц – центробежный, Н – насос, К – повышенный коррозионостойкости, И – повышенной износостойкости, М – модульного исполнения, 6 – группы насосов, 180, 350 – подача м\сут, 1200, 1100 – напор, м.в.ст.

В зависимости от диаметра эксплуатационной колонны, максимального поперечного габарита погружного агрегата, применяют ЭЦН различных групп – 5,5, а 6. Установка группы 5 с поперечным диаметром не менее 121,7 мм. Установки группы 5 а с поперечным габаритом 124 мм – в скважинах внутренним диаметром не менее 148,3 мм. Насосы также подразделяют на три условные группы – 5,5 а, 6. Диаметры корпусов группы 5 – 92 мм, группы 5 а – 103 мм, группы 6 – 114 мм. Технические характеристики насосов типа ЭЦНМ и ЭЦНМК приведены в приложении 1.

1.1.1.Историческая справка о развитии способа добычи .

Разработка бесштанговых насосов в нашей стране началась еще до революции. Когда А.С. Артюнов вместе с В.К. Домовым разработали скважинный агрегат, в котором центробежный насос приводился в действие погружным электродвигателем. Советские инженеры, начиная с 20-х годов, предлагали разработку поршневых насосов с поршневым пневматическим двигателем. Одним из первых такие насосы разработал М.И. Марцишевский.

Разработка скважинного насоса с пневмодвигателем была продолжена в Азинмаше В.И.Документовым. скважинные центробежные насосы с электроприводом разрабатывались в предвоенный период А.А.Богдановым, А.В. Крыловым, Л.И. Штурман. Промышленные образцы центробежных насосов с электроприводом были разработаны в особом конструкторском бюро по бесштанговым насосам. Эта организация ведет все работы по скважинным бесштанговым насосам, в том числе и по винтовым, диафрагменным и др.

Нефтегазодобывающая промышленность с открытием новых месторождений нуждалась в насосах для отбора из скважины большого количества жидкости. Естественно, что наиболее рационален лопастной насос, приспособленный для больших подач. Из лопастных насосов получили распространение насосы с рабочими колесами центробежного типа, поскольку они давали большой напор при заданных подачах жидкости и габаритах насоса. Широкое применение скважинных центробежных насосов с электроприводом обусловлено многими факторами. При больших отборах жидкости из скважины установки ЭЦН наиболее экономичные и наименее трудоемки при обслуживании, по сравнению с компрессорной добычей и подъемом жидкости насосами других типов. При больших подачах энергетические затраты на установку относительно невелики. Обслуживание установок ЭЦН просто, так ака на поверхности размещаются только станция управления и трансформатор, не требующие постоянного ухода.

Монтаж оборудования ЭЦН прост, так как станция управления и трансформатор не нуждаются в устройстве фундаментов. Эти два узла установки ЭЦН размещают обычно в легкой будке.

1.1.2.Состав и комплектность УЭЦН

Установка УЭЦН состоит из погружного насосного агрегата (электродвигателя с гидрозащитой и насоса), кабельной линии (круглого плоского кабеля с муфтой кабельного ввода), колонны НКТ, оборудования устья скважины и наземного электрооборудования: трансформатора и станции управления (комплектного устройства) (см. рисунок 1.1.). Трансформаторная подстанция преобразует напряжение промысловой сети дооптимальной величины на зажимах электродвигателя с учетом потерь напряжения в кабеле. Станция управления обеспечивает управление работой насосных агрегатов и его защиту при оптимальных режимах.

Погружной насосный агрегат, состоящий из насоса и электродвигателя с гидрозащитой и компенсатора, опускается в скважину по НКТ. Кабельная линия обеспечивает подвод электроэнергии к электродвигателю. Кабель крепится к НКТ, металлическими колесами. На длине насоса и протектора кабель плоский, прикреплен к ним металлическим колесами и защищен от повреждений кожухами и хомутами. Над секциями насоса устанавливаются обратный и сливной клапаны. Насос откачивает жидкость из скважины и подает ее на поверхность по колонне НКТ (см. рисунок 1.2.)

Оборудование устья скважины обеспечивает подвеску на фланце обсадной колонны НКТ с электронасосом и кабелем, герметизацию труб и кабеля, а также отвод добываемой жидкости в выходной трубопровод.

Насос погружной, центробежный, секционный, многоступенчатый не отличается по принципу действия от обычных центробежный насосов.

Отличие его в том, что он секционный, многоступенчатый, с малым диаметром рабочих ступеней – рабочих колес и направляющих аппаратов. Выпускаемые для нефтяной промышленности погружные насосы содержат от 1300 до 415 ступеней.

Секции насоса, связанные фланцевыми соединениями, представляют собой металлический корпус. Изготовленный из стальной трубы длиной 5500 мм. Длина насоса определяется числом рабочих ступеней, число которых, в свою очередь, определяется основными параметрами насоса. – подачей и напором. Подача и напор ступеней зависят от поперечного сечения и конструкции проточной части (лопаток), а также от частоты вращения. В корпусе секций насоса вставляется пакет ступеней представляющих собой собрание на валу рабочих колес и направляющих аппаратов.

Рабочие колеса устанавливаются на валу на призматической шпонке по ходовой посадке и могут перемещаться в осевом направлении. Направляющие аппараты закреплены от поворота в корпусе ниппеля, расположенным в верхней части насоса. Снизу в корпус ввинчивают основание насоса с приемными отверстиями и фильтром, через которые жидкость из скважины поступает к первой ступени насоса.

Верхний конец вала насоса вращается в подшипниках сальника и заканчивается специальной пяткой, воспринимающей нагрузку на вал и его вес через пружинное кольцо. Радиальные усилия в насосе воспринимаются подшипниками скольжения, устанавливаемыми в основании ниппеля и на валу насоса.

Типа. Оборудование УЭЦН состоит из погружной части, спускаемой в скважину вертикально на колонне НКТ, и наземной части соединенные между собой погружным силовым кабелем.

Энциклопедичный YouTube

    1 / 5

    ✪ Установка ЭЦН (схема УЭЦН) часть 1

    ✪ Пуск установки ЭЦН. Вывод на режим. Часть 2

    ✪ УЭЦН. Запуск, вывод на режим

    ✪ Работа станции управления УЭЦН

    ✪ Последовательность действий при запуске и выводе на режим скважины, оборудованной УЭЦН

    Субтитры

Погружное оборудование УЭЦН

Погружная часть оборудования УЭЦН представляет собой насосный агрегат вертикально спущенный в скважину на колонне НКТ состоящий из ПЭД (погружного электродвигателя), узла гидрозащиты, модуля приема жидкости, самого ЭЦН , обратного клапана, спускного (дренажного) клапана. Корпуса всех узлов погружной части УЭЦН представляют собой трубы имеющие фланцевые соединения для сочленения друг с другом, за исключением обратного и спускного клапанов, которые прикручиваются к НКТ резьбой. длина погружной части в собранном виде может достигать более 50 метров. Частью погружного оборудования так же является погружной кабель (КПБП) представляющий собой плоский бронированный трёхжильный кабель, длина его на прямую зависит от глубины спуска погружной части УЭЦН.

ЭЦН

Электроцентробежный насос для добычи нефти представляет собой многоступенчатую и в общем случае многосекционную конструкцию. Модуль-секция насоса состоит из корпуса, вала, пакета ступеней (рабочих колес и направляющих аппаратов), верхнего и нижнего радиальных подшипников, осевой опоры, головки, основания. Пакет ступеней с валом, радиальными подшипниками и осевой опорой помещаются в корпусе и зажимаются концевыми деталями. Исполнения насосов отличаются материалами рабочих органов, корпусных деталей, пар трения, конструкцией и количеством радиальных подшипников.

Основные производители ЭЦН

Отечественные производители
Зарубежные производители

В настоящее время самыми крупными производителями УЭЦН за рубежом являются:

  • REDA - США
  • Centrilift - США
  • ESP - США

В последние годы большую активность проявляют также изготовители УЭЦН из Китайской Народной Республики

Структура условного обозначения ЭЦН

На сегодняшний день с освоением новых месторождений нефти с осложненными условиями её добычи и применением технологий, повышающих нефтеотдачу пластов на уже эксплуатируемых месторождениях, приводит к уменьшению межремонтного периода эксплуатации традиционного нефтедобывающего оборудования, в том числе и ЭЦН . Этот факт требует от производителей увеличения модельного ряда, выпускаемого ими оборудования, которое может соответствовать условиям конкретных скважин. В связи с чем, выпускаются новые модели ЭЦН, имеющие конструктивные особенности рабочих органов, технологию их плавки и материал, из которого их изготавливают, расположение осевых и радиальных опор и многое другое. Все эти особенности отражены в условных обозначениях модели насоса, которые каждый производитель формирует согласно своим техническим условиям , но все отечественные производители используют общую форму для обозначения в названии модели типоразмера оборудования.

Пример условного обозначения:

ЭЦН 5-125-2150

  • Электроцентробежный насос
  • Габарит ЭЦН (условно указывает на минимальный внутренний диаметр обсадной колонны в дюймах)
  • Производительность - м³/сут. (при работе установки на частоте переменного тока 50 Гц, частота вращения 2910 оборотов в минуту с учетом скольжения)
  • Напор - м (сумма напоров всех ступеней во всех секциях установки при работе на частоте переменного тока 50 Гц округляется до 50 метров)

Некоторые производители используют следующее обозначение ЭЦН-5А-45-1800(3026), где в скобках указывают частоту оборотов при которой должен эксплуатироваться ЭЦН для достижения заданной производительности и напора.

Производители УЭЦН в США используют другую структуру обозначения своей продукции, например:

TD-650(242st) или DN-460(366st)

  • Буква D указывает на серию которая определяет габарит корпуса насоса.
  • Следующее число указывает производительность ЭЦН измеряющуюся в барр. /сут. при частоте переменного тока 60 Гц
  • В скобках указывается количество рабочих ступений в насосе

ПЭД

В большинстве случаев это двигатель специальной конструкции и представляет собой асинхронный ,трёхфазный , двухполюсный двигатель переменного тока с короткозамкнутым ротором. Двигатель заполнен маловязким маслом, которое выполняет функцию смазки подшипников ротора и отвода тепла к стенкам корпуса двигателя, омываемого потоком скважинной продукции. ПЭД являются приводом ЭЦН, преобразующим электрическую энергию, которая подается по кабелю сверху в зону подвески установки, в механическую энергию вращения насосов.

Гидрозащита

Гидрозащита это устройство служащее для защиты от попадания пластовой жидкости в полость электродвигателя, компенсации температурного расширения объема масла, передачи вращающего момента валу центробежного насоса. Нижний конец вала соединяется с валом (ротором) электродвигателя, верхний конец - с валом насоса при монтаже на скважине. Гидрозащита выполняет следующие функции:

  • уравнивает давление во внутренней полости двигателя с давлением пластовой жидкости в скважине;
  • компенсирует тепловое изменение объема масла во внутренней полости двигателя (излишки масла через клапаны выбрасываются в затрубное пространство скважины);
  • защищает внутреннюю полость двигателя от попадания пластовой жидкости и утечки масла (роль сальника)
  • передает вращающий момент валу центробежного насоса.

Модуль приема жидкости

Пластовая жидкость поступает к рабочим ступеням ЭЦН через приемные отверстия в нижней части насосного агрегата, для этого в некоторых установках в нижней части нижней секции ЭЦН имеются отверстия, но в большинстве случаев все установки ЭЦН комплектуются отдельным узлом приема жидкости, который называется приемный или входной модуль. Вал приемного модуля, с помощью шлицевых муфт, снизу соединяется с валом гидрозащиты, а вверху с валом нижней секции ЭЦН, таким образом во время работы УЭЦН вращение ротора-вала двигателя и гидрозащиты передается через этот узел насосным секциям. Кроме приема пластовой жидкости и передачи вращения этот узел, в зависимости от конструкции, может производить фильтрацию пластовой жидкости от механической примеси, выполнять роль газостабилизирующего узла. В соответствии с вышеуказанными функциями можно выделить следующие группы узлов приема жидкости:

Приемный модуль

Самый простой узел из ниже перечисленных, его основные задачи - прием пластовой жидкости в полость насоса и передача вращающего момента от ПЭД к ЭЦН . Состоит из основания (1) с отверстиями для прохода пластовой жидкости и вала (2), отверстия закрыты приемной сеткой (3), препятствующей их засорению. Как правило длина приемного модуля не превышает 500 мм, а диаметр корпуса соответствует диаметру корпуса секций насоса и так же как и ЭЦН классифицируется по габариту . При монтаже УЭЦН в скважину приемный модуль устанавливается между протектором гидрозащиты и нижней секцией ЭЦН или газостабилизирующим узлом если тот выполнен без приемных отверстий, для этого в нижней части основания имеется фланец со сквозными отверстиями для соединения с корпусом протектора, а в верхнем торце глухие отверстия с резьбой в которые закручены шпильки для соединения с фланцем узла монтируемого после приемного модуля.

Погружной фильтр

Устройство снижающее влияние механических примесей на работу ЭЦН. Может быть представлена в качестве модуля устанавливаемого между протектором гидрозащиты и нижней секцией ЭЦН где вся фильтрующая поверхность устройства является областью приёма пластовой жидкости, в этом случае погружной фильтр имеет в своей конструкции вал передающий вращение ротора двигателя секциям насоса и кроме фильтрации пластовой жидкости выполняет теже функции что и приёмный модуль. Погружной фильтр также может быть модулем подвешиваемым ниже всей установки. В этом случае фильтр не является модулем приёма жидкости а является дополнительным подвесным оборудованием.

Газосепаратор

Устройство работающее на приёме насоса, снижающее негативное влияние газового фактора путём отделения газовой фазы из добываемой пластовой жидкости. Пластовая жидкость через приёмные отверстия попадает на вращающийся шнек ускоряющий её движение, затем проходит через рабочее колесо, "взбалтывающее" жидкость для дегазации, в сепарационный барабан в котором под действием центробежных сил более тяжелые фазы (жидкость и механические примеси) выбрасываются на периферию где через специальный канал перемещаются на ступени насоса, а более легкая газовая фаза консолидируется по центру барабана и по специальному каналу выводится наружу в затрубное пространство скважины. Газосепаратор в УЭЦН устанавливается место входного модуля и состоит из:

  • корпуса (труба того же диаметра что и корпус ЭЦН длиной 0,5-1 м);
  • вала (получающего вращение ротора двигателя и передающего вращение на валы ЭЦН),
  • нижнего основания с фланцем для соединения с головкой протектора гидрозащиты, подшипником трения и приёмными отверстиями,
  • верхнего основания с подшипником трения и выводными отверстиями,
  • шнека,
  • рабочего колеса,
  • сепаратора.

Газосепаратор позволяет стабильно работать насосу при содержании газа в добываемой смеси на приёме до 55%.

Газодиспергатор

Так же как и газосепаратор является устройством снижающим вредное влияние газового фактора на работу ЭЦН, но в отличии от газосепаратора в нем происходит не разделение на жидкую и газовую фазу, а наоборот перемешивание выделившегося газа из жидкости в однородную эмульсию при этом газ не выводится в затрубное пространство.

Внешне эти узлы похожи за исключением отсутствия отверстий для вывода газа у газодиспергатора, а внутри у него вместо сепаратора набор рабочих органов взбивающих добывающую смесь.

Назначение и технические данные УЭЦН.

Установки погружных центробежных насосов предназначены для откачки из нефтяных скважин, в том числе и наклонных пластовой жидкости, содержащей нефть, воду и газ, и механические примеси. В зависимости от количества различных компонентов, содержащихся в откачиваемой жидкости, насосы установок имеют исполнение обычное и повышенной корозионно-износостойкости. При работе УЭЦН, где в откачиваемой жидкости концентрация мехпримесей превышает допустимую 0,1 грамм\литр происходит засорение насосов, интенсивной износ рабочих агрегатов. Как следствие, усиливается вибрация, попадание воды в ПЭД по торцевым уплотнениям, происходит перегрев двигателя, что приводит к отказу работы УЭЦН.

Условное обозначение установок:

УЭЦН К 5-180-1200, У 2 ЭЦН И 6-350-1100,

Где У – установка, 2 –вторая модификация, Э – с приводом от погружного электродвигателя, Ц – центробежный, Н – насос, К – повышенный коррозионостойкости, И – повышенной износостойкости, М – модульного исполнения, 6 – группы насосов, 180, 350 – подача м\сут, 1200, 1100 – напор, м.в.ст.

В зависимости от диаметра эксплуатационной колонны, максимального поперечного габарита погружного агрегата, применяют ЭЦН различных групп – 5,5, а 6. Установка группы 5 с поперечным диаметром не менее 121,7 мм. Установки группы 5 а с поперечным габаритом 124 мм – в скважинах внутренним диаметром не менее 148,3 мм. Насосы также подразделяют на три условные группы – 5,5 а, 6. Диаметры корпусов группы 5 – 92 мм, группы 5 а – 103 мм, группы 6 – 114 мм. Технические характеристики насосов типа ЭЦНМ и ЭЦНМК приведены в приложении 1.

Состав и комплектность УЭЦН

Установка УЭЦН состоит из погружного насосного агрегата (электродвигателя с гидрозащитой и насоса), кабельной линии (круглого плоского кабеля с муфтой кабельного ввода), колонны НКТ, оборудования устья скважины и наземного электрооборудования: трансформатора и станции управления (комплектного устройства) (см. рисунок 1.1.). Трансформаторная подстанция преобразует напряжение промысловой сети дооптимальной величины на зажимах электродвигателя с учетом потерь напряжения в кабеле. Станция управления обеспечивает управление работой насосных агрегатов и его защиту при оптимальных режимах.

Погружной насосный агрегат, состоящий из насоса и электродвигателя с гидрозащитой и компенсатора, опускается в скважину по НКТ. Кабельная линия обеспечивает подвод электроэнергии к электродвигателю. Кабель крепится к НКТ, металлическими колесами. На длине насоса и протектора кабель плоский, прикреплен к ним металлическим колесами и защищен от повреждений кожухами и хомутами. Над секциями насоса устанавливаются обратный и сливной клапаны. Насос откачивает жидкость из скважины и подает ее на поверхность по колонне НКТ (см. рисунок 1.2.)

Оборудование устья скважины обеспечивает подвеску на фланце обсадной колонны НКТ с электронасосом и кабелем, герметизацию труб и кабеля, а также отвод добываемой жидкости в выходной трубопровод.

Насос погружной, центробежный, секционный, многоступенчатый не отличается по принципу действия от обычных центробежный насосов.

Отличие его в том, что он секционный, многоступенчатый, с малым диаметром рабочих ступеней – рабочих колес и направляющих аппаратов. Выпускаемые для нефтяной промышленности погружные насосы содержат от 1300 до 415 ступеней.

Секции насоса, связанные фланцевыми соединениями, представляют собой металлический корпус. Изготовленный из стальной трубы длиной 5500 мм. Длина насоса определяется числом рабочих ступеней, число которых, в свою очередь, определяется основными параметрами насоса. – подачей и напором. Подача и напор ступеней зависят от поперечного сечения и конструкции проточной части (лопаток), а также от частоты вращения. В корпусе секций насоса вставляется пакет ступеней представляющих собой собрание на валу рабочих колес и направляющих аппаратов.

Рабочие колеса устанавливаются на валу на призматической шпонке по ходовой посадке и могут перемещаться в осевом направлении. Направляющие аппараты закреплены от поворота в корпусе ниппеля, расположенным в верхней части насоса. Снизу в корпус ввинчивают основание насоса с приемными отверстиями и фильтром, через которые жидкость из скважины поступает к первой ступени насоса.

Верхний конец вала насоса вращается в подшипниках сальника и заканчивается специальной пяткой, воспринимающей нагрузку на вал и его вес через пружинное кольцо. Радиальные усилия в насосе воспринимаются подшипниками скольжения, устанавливаемыми в основании ниппеля и на валу насоса.

В верхней части насоса находится ловильная головка, в которой устанавливается обратный клапан и к которой крепится НКТ.

Электродвигатель погружной, трехфазовый, асинхронный, маслозаполненный с короткозамкнутым ротором в обычном исполнении и коррозионностойком исполнениях ПЭДУ (ТУ 16-652-029-86). Климатическое исполнение – В, категория размещения – 5 по ГОСТ 15150 – 69. В основании электродвигателя предусмотрены клапан для закачки масла и его слива, а также фильтр для очистки масла от механических примесей.

Гидрозащита ПЭД состоит из протектора и компенсатора. Она предназначена для предохранения внутренней полости электродвигателя от попадания пластовой жидкости, а также компенсации температурных изменений объемов масла и его расхода. (см. рисунок 1.3.)

Протектор двухкамерный, с резиновой диафрагмой и торцевыми уплотнениями вала, компенсатор с резиновой диафрагмой.

Кабель трехжильный с полиэтиленовой изоляцией, бронированный. Кабельная линия, т.е. кабель намотанный на барабан, к основанию которого присоединен удлинитель – плоский кабель с муфтой кабельного ввода. Каждая жила кабеля имеет слой изоляции и оболочку, подушки из прорезиненной ткани и брони. Три изолированные жилы плоского кабеля уложены параллельно в ряд, а круглового скручены по винтовой линии. Кабель в сборе имеет унифицированную муфту кабельного ввода К 38, К 46 круглого типа. В металлическом корпусе муфты герметично заделаны с помощью резинового уплотнения, к токопроводящим жилам прикреплены наконечники.

Конструкция установок УЭЦНК, УЭЦНМ с насосом имеющим вал и ступени, выполненные из коррозионностойких материалов, и УЭЦНИ с насосом, имеющим пластмассовые рабочие колеса и резинометаллические подшипники аналогична конструкция установок УЭЦН.

При большом газовом факторе применяют насосные модули – газосепараторы, предназначенные для уменьшения объемного содержания свободного газа на приеме насоса. Газосепараторы соответствуют группе изделий 5, виду 1 (восстанавливаемые) по РД 50-650-87, климатическое исполнение - В, категория размещения – 5 по ГОСТ 15150-69.

Модули могут быть поставлены в двух исполнениях:

Газосепараторы: 1 МНГ 5, 1 МНГ5а, 1МНГ6 – обычного исполнения;

Газосепараторы 1 МНГК5, МНГ5а – повышенной коррозионной стойкости.

Модули насосные устанавливаются между входным модулем и модулем-секцией погружного насоса.

Погружной насос, электродвигатель, и гидрозащита соединяются между собой фланцами и шпильками. Валы насоса, двигателя и протектора имеют на концах шлицы и соединяются шлицевыми муфтами.

Комплектующие подъемы и оборудование установок ЭЦН приведены в приложении 2.

Технические характеристика ПЭД

Приводом погружных центробежных насосов служит специальный маслозаполненный погружной ассинхронный электродвигатель трехфазного переменного тока с короткозамкнутым ротором вертикального исполнения типа ПЭД. Электродвигатели имеют диаметры корпусов 103, 117, 123, 130, 138 мм. Поскольку диаметр электродвигателя ограничен, при больших мощностях двигатель имеет большую длину, а в некоторых случаях выполнения секционным. Так как электродвигатель работает погруженным в жидкость и часто под большим гидростатическим давлением, основное условие надежной работы – его герметичность (см. рисунок 1.3).

ПЭД заполняется специальным маловязким, высокой диэлектрической прочности маслом, служащим как для охлаждения, так и для смазки деталей.

Погружной электродвигатель состоит из статора, ротора, головки, основания. Корпус статора изготавливается из стальной трубы, на концах которой предусмотрена резьба для подсоединения головки и основания двигателя. Магнитопровод статора собирается из активных и немагнитных шихтованных жестей, имеющих пазы, в которых располагаются обмотка. Обмотка статора может быть однослойной, протяжной, катушечной или двухслойной, стержневой, петлевой. Фазы обмотки соединены.

Активная часть магнитопровода совместно с обмоткой создает в электродвигателей вращающееся магнитное поле, а немагнитная часть служит опорами для промежуточных подшипников ротора. К концам обмотки статора припаивают выводные концы, изготовленные из многожильной медного провода с изоляцией, имеющий высокую электрическую и механическую прочность. К концам припаивают штежельные гильзы, в которые входят наконечники кабеля. Выводные концы обмотки соединяют с кабелем через специальную штежельную колодку (муфту) кабельного ввода. Токоввод двигателя может быть и ножевого типа. Ротор двигателя короткозамкнутый, многосекционный. В его состав входят вал, сердечники (пакеты ротора), радиальные опоры (подшипники скольжения). Вал ротора выполнен из пустотелой калиброванной стали, сердечники из листовой электротехнической стали. Сердечники набираются на вал, чередуясь с радиальными подшипниками, и соединены с валом шпонками. Набор сердечников на валу затянуть в осевом направлении гайками или турбинкой. Турбинка служит для принудительной циркуляции масла для выравнивания температуры двигателя на длине статора. Для обеспечения циркуляции масла на погружной поверхности магнитопровода имеются продольные пазы. Масло циркуляцией через эти пазы, фильтра в нижней части двигателя, где оно очищается, и через отверстие в валу. В головке двигателя расположены пята и подшипник. Переводник в нижней части двигателя служит для размещения фильтра, перепускного клапана и клапана для закачки масла в двигатель. Электродвигатель секционного исполнения состоит из верхней и нижней секций. Каждая секция имеет такие же основные узлы. Технические характеристики ПЭД приведены в приложении 3.

Основные технические данные кабеля

Подвод электроэнергии к электродвигателю установки погружного насоса осуществляется через кабельную линию, состоящую из питающего кабеля и муфты кабельного ввода для сочленения с электродвигателем.

В зависимости от назначения в кабельную линию могут входить:

Кабель марок КПБК или КППБПС – в качестве основного кабеля.

Кабель марки КПБП (плоский)

Муфта кабельного ввода круглая или плоская.

Кабель КПБК состоит из медных однопроволочных или многопроволочных жил, изолированных в два слоя полиэтиленом высокой прочности и скрученных между собой, а также подушки и брони.

Кабели марок КПБП и КППБПС в общей шланговой оболочке состоят из медных однопроволочных и многопроволочных жил, изолированных полиэтиленом высокой плотности и уложенных в одной плоскости, а так же из общей шланговой оболочке, подушки и брони.

Кабели марки КППБПС с отдельно отшлангованными жилами состоят из медных одно-,многопроволочных жил, изолированных в два слоя полиэтилена высокого давления и уложенных в одной плоскости.

Кабель марки КПБК имеет:

Рабочее напряжение В – 3300

Кабель марки КПБП имеет:

Рабочее напряжение, В - 2500

Допустимое давление пластовой жидкости, МПа – 19,6

Допустимый газовый фактор, м/т – 180

Кабель марки КПБК и КПБП имеет допустимые температуры окружающей среды от 60 до 45 С воздуха, 90 С – пластовой жидкости.

Температуры кабельных линий приведены в приложении 4.

1.2.Краткий обзор отечественных схем и установок.

Установки погружных центробежных насосов предназначены для откачивания нефтяных скважин, в том числе наклонных, пластовой жидкости, содержащей нефть и газ, и механической примеси.

Установки выпускаются двух видов – модульные и немодульные; трех исполнений: обычное, коррозионостойкое и повышенной износостойкости. Перекачиваемая среда отечественных насосов должна иметь следующие показатели:

· пластовая дикость – смесь нефти, попутной воды и нефтяного газа;

· максимальная кинематическая вязкость пластовой жидкости 1 мм\с;

· водородный показатель попутной воды рН 6,0-8.3;

· максимальное содержание полученной воды 99%;

· свободного газа на приеме до 25%, для установок с модулями – сепараторами до 55%;

· максимальная температура добываемой продукции до 90С.

В зависимости от поперечных размеров применяемых в комплекте установок погружных центробежных электронасосов, элетродвигателей и кабельных линий установки условно делятся на 2 группы 5 и 5 а. С диаметрами обсадных колонн 121.7 мм; 130 мм; 144,3 мм соответственно.

Установка УЭЦ состоит из погружного насосного агрегата, кабеля в сборе, наземного электрооборудования – трансформаторной комилентной подстанции. Насосный агрегат состоит из погружного центробежного насоса и двигателя с гидрозащитой, спускается в скважину на колонне НКТ. Насос погружной, трехфазный, асинхронный, маслозаполненный с ротором.

Гидрозащита состоит из протектора и компенсатора. Кабель трехжильный с полиэтиленовой изоляцией, бронированный.

Погружной насос, электродвигатель и гидрозащита соединяются между собой фланцами и шпильками. Валы насоса, двигателя и протектора имеют на концах шлицы и соединяются шлицевыми муфтами.

1.2.2. Погружной центробежный насос.

Погружной центробежный насос по принципу действия не отличается от обычных центробежных насосов, применяемых для перекачки жидкости. Отличие в том, что он многосекционный с малым диаметром рабочих ступеней – рабочих колес и направляющих аппаратов. Рабочие колеса и направляющие аппараты насосов обычного исполнения изготавливают из модифицированного серого чугуна, насосов коррозионностойких – чугуна типа «нирезист», износостойких колес – их полиамидных смол.

Насос состоит из секций, число которых зависит от основных параметров насоса – напора, но не более четырех. Длина секции до 5500 метров. У модульных насосов состоит из входного модуля, модуля – секции. Модуль – головки, обратного и спускного клапанов. Соединение модулей между собой и входного модуля с двигателем – фланцевое соединение (кроме входного модуля, двигателем или сепаратором) уплотняются резиновыми манжетами. Соединение валов модулей-секций между собой, модуля-секции с валом входного модуля, вала входного модуля с валом гидрозащиты двигателя осуществляется шлицевыми муфтами. Валы модулей-секций всех групп насосов имеющих одинаковые длины корпусов унифицированы по длине.

Модуль-секция состоит из корпуса, вала, пакета ступеней (рабочих колес и направляющих аппаратов), верхнего и нижнего подшипников, верхней осевой опоры, головки, основания, двух ребер и резиновых колец. Ребра предназначены для защиты плоского кабеля с муфтой от механических повреждений.

Входной модуль состоит из основания с отверстиями для прохода пластовой жидкости, подшипниковых втулок и сетки, вала с защитными втулками и шлицевой муфтой, предназначенной для соединения вала модуля с валом гидрозащиты.

Модуль-головка состоит из корпуса, с одной стороны которого имеется внутренняя коническая резьба для подсоединения обратного клапана, с другой стороны – фланец для подсоединения к модулю-секции, двух ребер и резинового кольца.

В верхней части насоса имеется ловильная головка.

Отечественной промышленностью выпускаются насосы с подачей (м/сут):

Модульные – 50,80,125,200.160,250,400,500,320,800,1000.1250.

Немодульные – 40.80,130.160,100,200,250,360,350,500,700,1000.

Следующих напоров (м) - 700, 800, 900, 1000, 1400, 1700, 1800, 950, 1250, 1050, 1600, 1100, 750, 1150, 1450, 1750, 1800, 1700, 1550, 1300.

1.2.3. Погружные электродвигатели

Погружные электродвигатели состоят из электродвигателя и гидрозащиты.

Двигатели трехфазные, ассинхронные, короткозамкнутые, двухполюсные, погружные, унифицированной серии. ПЭД в нормальном и коррозионном исполнениях, климатического исполнения В, категории размещения 5, работают от сети переменного тока частотой 50 Гц и используются в качестве привода погружных центробежных насосов.

Двигатели предназначены для работы в среде пластовой жидкости (смесь нефти и попутной воды в любых пропорциях) с температурой до 110 С содержащей:

· мехпримесей не более 0.5 г/л;

· свободного газа не более 50%;

· сероводорода для нормальных, не более 0.01 г/л, коррозионностойких до 1,25 г/л;

Гидрозащитное давление в зоне работы двигателя не более 20 МПа. Электродвигатели заполняются маслом с пробивным напряжением не менее 30 КВ. Предельная длительно допускаемая температура обмотки статора электродвигателя (для двигателя с диаметром корпуса 103 мм) равна 170 С, остальных электродвигателей 160 С.

Двигатель состоит из одного или нескольких электродвигателей (верхнего, среднего и нижнего, мощностью от 63 до 630 КВт) и протектора. Электродвигатель состоит из статора, ротора, головки с токовводом, корпуса.

1.2.4. Гидрозащита электродвигателя.

Гидрозащита предназначена для предотвращения проникновения пластовой жидкости во внутреннюю полость электродвигателя, компенсации объема масла во внутренней полости от температуры электродвигателя и передачи крутящего момента от вала электродвигателя к валу насоса. Существует несколько вариантов гидрозащиты: П, ПД, Г.

Гидрозащиту выпускают обычного и коррозионностойкого исполнений. Основным типом гидрозащиты для комплектации ПЭД принята гидрозащита открытого типа. Гидрозащита открытого типа требует применения специальной барьерной жидкости плотностью до 21 г/см, обладающий физико-химическими свойствами с пластовой жидкостью и маслом.

Гидрозащита состоит из двух камер сообщенных трубкой. Изменение объемов жидкого диэлектрика в двигателе компенсируется перетоком барьерной жидкости из одной камеры в другую. В гидрозащите закрытого типа применяются резиновые диафрагмы. Их эластичность компенсирует изменение объема масла.

24. Условие фонтанирования скважин, определение энергии и удельного расхода газа при работе газожидкостного подъёмника.

Условия фонтанирования скважин .

Фонтанирование скважин происходит в том случае, если перепад давления между пластовым и забойным будет достаточным для преодоления противодавления столба жидкости и потерь давления на трение, тоесть фонтанирование происходит под действием гидростатического давления жидкости или энергии расширяющегося газа. Большинство скважин фонтанирует за счет энергии газа и гидростатического напора одновременно.

Газ, находящийся в нефти, обладает подъемной силой, которая проявляется в форме давления на нефть. Чем больше газа расстворено в нефти, тем меньше будет плотность смеси и тем выше поднимается уровень жидкости. Достигнув устья, жидкость переливается, и скважина начинает фонтанировать. Общим обязательным условием для работы любой фонтанирующей скважины будет следующее основное равенство:

Рс = Рг+Ртр+ Ру; где

Рс - давление на забое, РГ, Ртр, Ру - гидростатическое давление столба жидкости в скважине, расчитанное по вертикали, потери давления на трение в НКТ и противодавление на устье, соответственно.

Различают два вида фонтанирования скважин:

· Фонтанирование жидкости, не содержащей пузырьки газа - артезианское фонтанирование.

· Фонтанирование жидкости, содержащей пузырьки газа облегчающего фонтанирование - наиболее распространенный способ фонтанирования.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

В Россий среди бесштанговых насосов наиболее распространенными являются установки электроцентробежных насосов. Ими оборудовано свыше 35 % всего фонда скважин страны. Установки электроцентробежных насосов (УЭЦН) имеют очень большой диапазон подач (от 10 до 1000 мі/сут. и более) и способны развивать напор до 2000 м. В области больших подач (свыше 80 мі/сут.) УЭЦН имеют самый высокий коэффициент полезного действия (к.п.д.) среди всех механизированных способов добычи нефти. В интервале подач от 50 до 300 мі/сут. к.п.д. УЭЦН превышает 40 %, но в области небольших подач к.п.д. УЭЦН резко падает. По возможности организации дистанционного контроля состояния, а также регулирования производительности УЭЦН существенно превосходит штанговые установки. Также работоспособность УЭЦН меньше подвержена влиянию кривизны ствола скважины.

Влияние кривизны ствола скважины на работоспособность УЭЦН сказывается в основном при спуско - подъемных операциях (СПО) вследствие возможности повреждения кабеля и не связано (до определенной величины угла наклона скважины и темпа набора ее кривизны), как у ШСНУ, с самим процессом эксплуатации. Однако, УЭЦН плохо работают в условиях коррозионно-агрессивной среды, при выносе песка, в условиях высокой температуры и высокого газового фактора.

УЭЦН предназначены для откачки пластовой жидкости из нефтяных скважин и используется для форсирования отбора жидкости.

Для надежной работы насоса требуется его правильный подбор к данной скважине. При работе скважины постоянно меняются параметры пласта, призабойной зоны пласта, свойства отбираемой жидкости: содержание воды, количество попутного газа, количество механических примесей, и как следствие, отсюда идет недобор жидкости или работа насоса вхолостую, что сокращает межремонтный период работы насоса. На данный момент делается упор на более надежное оборудование, для увеличения межремонтного периода, и как следствие из этого снижение затрат на подъем жидкости. Этого можно добиться, применяя центробежные УЭЦН вместо ШСН, так как центробежные насосы имеют большой межремонтный период.

Установку УЭЦН можно применять при откачке жидкости, содержащей газ, песок, и коррозионо - активные элементы.

1 . Устройство и техническая характеристика УЭЦН

1.1 Наз начение и технические данные УЭЦН

Погружные центробежные установки предназначены для откачки пластовой жидкости из нефтяных скважин. Погружные центробежные электронасосы для добычи нефти предназначены для эксплуатации нефтяных, подчас сильно обводненных, скважин малого диаметра и большой глубины, они обеспечивают безотказную и длительную работу в жидкостях, содержащих агрессивные пластовые воды с растворенными в них различными солями, газа (в том числе сероводород), механические примеси в виде песка. Глубина погружения насоса достигает 2500 м и более, а температура откачиваемой жидкости иногда достигает 100 0 С. Требования к пластовой жидкости для эксплуатации скважины установками электроцентробежных насосов приведены в таблице 1.1.

Таблица 1.1 - Допустимые характеристики пластовой жидкости для эксплуатации скважины установками ЭЦН

Техническая характеристика пластовой жидкости

Значение технической характеристики

Максимальное содержание попутной воды, %

Водородный показатель попутной воды, pH

Максимальная плотность жидкости, кг/м 3

Максимальная кинематическая вязкость однофазной жидкости, при которой обеспечивается работа насоса без изменения напора и КПД, мм 2 /с

Максимальная массовая концентрация твердых частиц для насосов, г/л:

Обычного исполнения

Коррозионостойкого исполнения

Износостойкого, коррозионноизносостойкого исполнения

Повышенной коррозионноизносостойкости

При комплектации насосов фильтром тонкой очистки

Микротвердость частиц по Морс, баллов, не более:

Обычного, коррозионностойкого исполнения

Повышенной коррозионноизносостойкости, износостойкого, коррозионноизносостойкого исполнения

Максимальное содержание свободного газа на приеме насоса, % по объему:

Обычного исполнения

С применением газосепаратора в составе установки

С применением газосепаратора-диспергатора

С применением модуля входного диспергирующего в составе установки

Максимальная концентрация сероводорода для насосов, г/л:

Обычного, износостойкого исполнения

Коррозионноизносостойкого исполнения, повышенной коррозионноизносостойкости

Максимальная температура откачиваемой жидкости, С

Максимальное гидростатическое давление в зоне подвески установки, МПа

Количество агрессивных компонентов, не более (при применении насосов повышенной коррозионноизносостойкости, коррозионноизносостойкого исполнения), г/л:

Скважины, в которых эксплуатируются установки, должны удовлетворять следующим условиям:

а) минимальный внутренний диаметр скважины для каждого габарита установки согласно технического описания на насосы и двигатели;

б) максимальный темп набора кривизны ствола скважины - 2є на 10 метров, а в зоне работы установки - 3 минуты на 10 метров;

в) максимальное гидростатическое давление в зоне подвески установки - 40 МПа;

г) в зоне работы погружной установки отклонение ствола скважины от вертикали должно быть не более 60 градусов .

1.2 Преимущества и недостатки УЭЦН

Широкое применение в нашей стране получили погружные установки центробежных электронасосов. Средний дебит нефтяной скважины, оборудованной такой установкой, составляет 120-140 тонн/сутки, в то время как дебит скважин, оборудованных штанговыми насосными установками, всего 15 тонн/сутки. Большое преимущество этих установок - простота обслуживания, большой межремонтный период работы - 1 год. Нередки случаи, когда на отдельных месторождениях установки работают более 2-3 лет без подъема.

1.2.1 Преимущества электроцентробежных насосов

Скважины, оборудованные установками погружных центробежных электронасосов, выгодно отличаются от скважин, оборудованных глубиннонасосными установками.

Здесь на поверхности нет механизмов с движущимися частями, отсутствуют громадные металлоемкие станки - качалки и массивные фундаменты, необходимые для их установки.

Применение такого оборудования позволяет вводить скважины в эксплуатацию сразу же после бурения в любой период года, даже в самые суровые зимние месяцы, без больших затрат времени и средств на сооружение фундаментов и монтажа тяжелого оборудования. При эксплуатации скважин ЭЦН устье легко поддается герметизации, что позволяет осуществлять сбор и отвод попутного газа. Для установок ЭЦН характерно отсутствие промежуточного звена насосных штанг, благодаря чему повышается межремонтный период работы скважин.

Расширяется область применения насосной добычи из глубоких скважин и форсированного отбора жидкости из сильно обводненных скважин, а также наклонно-направленных скважин.

1.2.2 Недостатки электроцентробежных насосов

К недостаткам бесштанговых насосных установок можно отнести: сложный ремонт скважины при падении труб, иногда не приводящий к результату; сложное оборудование, требующее электрика высокой квалификации.

На больших оборотах нефть смешивается с водой, приходится тратить большое количество энергии, чтобы отделить нефть от воды. ЭЦН могут применяться также для межпластовой закачки воды и для поддержания пластовых давлений в нефтяных залежах.

а) в жидкостях которых содержится значительное количество песка, вызывающего быстрый износ рабочих деталей насоса;

б) с большим количеством газа, снижающего производительность насоса.

1.3 Состав оборудования

В комплект погружной установки для добычи нефти входят: электродвигатель с гидрозащитой, насос, кабельная линия, наземное электрооборудование, станция автоматического управления (рисунок 1.1).

Насос приводится в действие электродвигателем и обеспечивает подачу пластовой жидкости из скважины по насосно-компрессорным трубам на поверхность в трубопровод.

Кабельная линия обеспечивает подвод электроэнергии к электродвигателю. Соединяется с электродвигателем при помощи муфты кабельного ввода.

1 - электродвигатель; 2 - протектор; 3 - сетчатый фильтр насоса; 4 - погружной центробежный насос; 5 - специальный кабель; 6 - направляющий ролик; 7 - кабельный барабан; 8 - автотрансформатор; 9 - автоматическая станция управления; 10 - пояс для крепления кабеля

Рисунок 1.1 - Схема размещения оборудования ЭЦН

Кабель крепится к гидрозащите, насосу и компрессорным трубам металлическими поясами, входящими в комплект поставки насоса.

Наземное электрооборудование - комплектная трансформаторная подстанция или станция управления с трансформатором преобразует напряжение промысловой сети до величины, обеспечивающей оптимальное напряжение на выходе в электродвигатель с учетом потерь напряжения в кабеле, обеспечивает управление работой погружной установки и ее защиту при аномальных режимах . Электронасос представляет собой агрегат, состоящий из специального погружного маслозаполненного электродвигателя переменного тока, протектора, предохраняющего двигатель от проникновения в него окружающей жидкости, и центробежного многоступенчатого насоса. Корпуса электродвигателя, протектора и насоса соединены между собой посредством фланцев. Валы имеют шлицевые соединения. В собранном агрегате электродвигатель расположен внизу, над ним протектор, а над протектором насос.

Электронасос спускают в скважину на насосно-компрессорных трубах и подвешивают на подвесной шайбе без дополнительного крепления в скважине. Питание двигателя электроэнергией осуществляется по специальному нефтестойкому круглому трехжильному кабелю марки КРБК в гибкой ленточной броне, который проходит через подвесную шайбу и укреплен к насосным трубам металлическими поясами. На поверхности лишь устанавливают станцию управления и автотрансформатор, а на устье скважины - манометр и задвижку. Для максимального уменьшения диаметрального габарита погружного агрегата вдоль него укладывают специальный плоский кабель КРБП в гибкой ленточной броне, защищенный от повреждения ребрами, приваренными к насосу, и защитными кожухами.

Комплектную трансформаторную подстанцию или станцию управления

и трансформатор устанавливают и закрепляют на фундаменте или постаменте на расстоянии не менее 20 м от устья скважины. Высота фундаментов (постаментов) должна быть такой, чтобы были исключены затопления водой и занос снегом установленного на них оборудования. На расстоянии 15-20 м от устья скважины, на специально приготовленной ровной площадке расположить барабан с кабелем, установив его на механизированный кабеленаматыватель или на опоры, на которых будет вращаться барабан. Барабан должен располагаться так, чтобы его ось вращения была перпендикулярна воображаемой линии, проведённой от устья скважины к середине барабана. Будет удобнее производить спуск установки, если расположите барабан так, чтобы кабель сматывался с верхней его части.

Для удобства направления кабеля в скважину при его спуске используют так называемый кабельный ролик, подвешенный над устьем скважины на небольшой высоте.

Приготовить и расположить на мостках или подставках насосно-компрессорные трубы и переводники к ним таким образом, чтобы муфты труб были обращены к устью скважины, чтобы трубы находились в поле зрения оператора подъёмного агрегата и не мешали проводить работы с кабелем. Наружная и внутренняя полости труб должны быть чистыми.

При эксплуатации скважин погружными центробежными электронасосами устье легко поддается герметизации, что позволяет осуществлять сбор и отвод попутного газа. Наземное электрооборудование, ввиду его малых габаритов, небольшого веса и наличия защитных кожухов, в зависимости от климатических условий может быть установлено либо непосредственно на открытом воздухе, либо в небольшой неотапливаемой будке, но так, чтобы ни снежные заносы, ни паводки не препятствовали нормальной бесперебойной эксплуатации скважины.

Характерной особенностью погружных центробежных электронасосов является простота обслуживания, экономичность, относительно большой межремонтный период их работы. Продолжительность работы насосов между подъемами для ремонта в большинстве случаев превышает 200 суток, во многих скважинах они работают без подъема 2-3 года.

1.4 О бзор зарубежных установок

В США погружные насосы изготовляют как в односекционном, так и в двух-, трёх- и четырёхсекционном исполнении в зависимости от заданного напора.

Характерной чертой насосов фирмы Byron Jackson, отличающей их от других конструкций насосов, является отсутствие пяты у вала насоса как в односекционном, так и многосекционном насосе. Осевая сила, действующая на торец вала в результате давления, развиваемого насосом, и массы самого вала воспринимается пятой, расположенной в секции уплотнения (протектора). В секционных насосах валы стыкуются, упираясь друг в друга и образуя как бы единый вал большой длины. Размещение осевой опоры насоса в секции уплотнения имеет определённый смысл, т.к. пята в этом случае работает в чистом масле. Следовательно, её надёжность должна быть больше, чем у пяты, работающей непосредственно в пластовой жидкости.

У первых конструкций насосов фирмы Reda осевая опора вала выполнена в виде радиально-упорных шарикоподшипников типа «дуплекс», расположенных в нижней части в специальной камере.

В насосах фирмы Byron Jackson длина вала 3 - 4 секций может достигать 25...30 м. Соединяются валы между собой и с валом секции уплотнения посредством шлицевых муфт, торцы их упираются друг в друге через штифт или шайбу в шлицевой муфте.

Чтобы придать устойчивость валу во время работы, фирмой Byron Jackson предложено применять промежуточные резинометаллические подшипники, ставя их через 6 ступеней. В отличие от отечественных конструкций резинометаллические подшипники фирмы Byron Jackson устанавливаются не вместо соответствующих ступеней, а монтируются в направляющие аппараты.

Насосы фирмы Reda Pump отличаются конструктивным исполнением отдельных деталей. Прежде всего следует отметить, что насосы фирмы Reda Pump имеют левое направление вращения вала, если смотреть сверху.

Ловильная головка и основание выполнены отдельными элементами конструкции с таким расчётом, что могут быть присоединены как к односекционному, так и к многосекционному насосу. Это способствует унификации деталей и узлов.

В большинстве конструкций насосов Reda Pump в верхней части отсутствует пята. Вместо пяты часть рабочих колёс (до 40 %) строго фиксируется в осевом направлении на валу с помощью упоров, закреплённых в выточках на валу насоса. Таким образом, верхняя часть рабочих колёс, втулки которых упираются друг в друга, удерживается от осевого перемещения.

В погружных насосах фирмы Byron Jackson осевые силы от рабочих колёс плавающего типа ступеней воспринимаются направляющими аппаратами одновременно на две поверхности опор при направлении силы вниз и на одну поверхность в случае всплытия рабочего колеса вверх. Такую конструкцию ступени называют двухопорной.

Двухопорные ступени применяются также фирмами Reda Pump Co., Oil Dynamics и Oilline в тех случаях, когда необходимо уменьшить удельную нагрузку на опору.

В отличии от одноопорной конструкции ступени, двухопорная ступень, кроме основной опоры, опирающейся на бурт направляющего аппарата, имеет вторую опору, опирающуюся на втулку направляющего аппарата. Таким образом, общая площадь увеличивается, удельная нагрузка на опору уменьшается, уменьшается износ и увеличивается долговечность.

Двухопорная ступень позволяет вводить в работу опоры поочерёдно, за счёт толщины опорных шайб или соответствующих осевых размеров буртов.

Ступени с разгрузочными отверстиями в рабочем колесе широко применяются в насосах фирм Reda Pump, Oilline и Oil Dynamics.

Ступень такой конструкции снижает осевую силу до 25% и, следовательно, не нуждается во второй опоре. Однако при этом снижается КПД на 4...6 %. В погружных насосах, КПД ступеней которых и без того низкий, разгрузочные отверстия в рабочих колёсах не делают.

Зарубежными фирмами уделяется большое внимание чистоте проточных каналов рабочих элементов насосов, т. к. от этого зависит КПД ступеней. Фирма Byron Jackson, например, отливает рабочие колёса и направляющие аппараты презиционным способом, что обеспечивает чистую гладкую поверхность проточных каналов.

Рабочие колёса, отлитые презиционным способом, имеют равномерную толщину дисков, лопастей, втулок, строгую концентричность элементов, благодаря чему обеспечивается нужная балансировка всех рабочих колёс.

2 . Патентная проработка

2.1 Варианты патентной проработки

2.1.1 Патент 66417 Российская Федерация, E21B43/38

Погружной скважинный насосный агрегат для добычи нефти, шламоуловитель и предохранительный клапан погружного скважинного насосного агрегата . Говберг Артем Савельевич, Терпунов Вячеслав Абельевич; заявитель и патентообладатель «Центр разработки нефтедобывающего оборудования (ЦРНО) (SC)». - № 2007113036/22, заяв. 10.04.2007; опуб. 10.09.2007.

Технические решения относятся к устройствам для очистки пластовой жидкости в нефтяных скважинах и могут быть использованы в нефтедобывающей промышленности для защиты погружного насосного оборудования от воздействия мехпримесей, содержащихся в перекачиваемой жидкости, преимущественно после проведения операции по гидроразрыву пласта, в процессе освоения скважин, а также при добыче нефти из пескопроявляющих скважин с концентрацией мехпримесей до 5 г/л, а также для защиты насосного оборудования от нештатных режимов работы при засорении сепарирующих устройств. Погружной скважинный насосный агрегат для добычи нефти, обеспечивающее достижение указанного выше технического результата, включает в себя погружной насос, электродвигатель и шламоуловитель. При этом насосный агрегат снабжен предохранительным клапаном, выполненным с возможностью гидравлического соединения приема насоса с затрубным пространством за шламоуловителем при условии прекращения движения перекачиваемой жидкости через шламоуловитель. Достигаемый технический результат заключается в обеспечении эффективной защиты погружного насосного оборудования от воздействия мехпримесей, содержащихся в перекачиваемой жидкости, без загрязнения призабойной зоны скважины, а также защиты насосного оборудования от нештатных режимов работы при переполнении шламосборника и/или забивании сепаратора частицами мехпримесей.

Предохранительный клапан включает в себя корпус с перепускным отверстием и золотниковую втулку с перепускным отверстием. Золотниковая втулка выполнена с возможностью перемещения под воздействием потока перекачиваемой погружным насосом жидкости. Между золотниковой втулкой и корпусом образована дифференциальная полость. Достигаемый технический результат заключается в повышении чувствительности и скорости срабатывания предохранительного клапана.

Известен предохранительный клапан погружного скважинного насосного агрегата для добычи нефти, описанный в патенте US 5494109 А, 27.02.1996, включающий в себя корпус, выполненные с возможностью подключения в трубопровод для подачи перекачиваемой жидкости на прием насоса. В боковой стенке корпуса выполнены перепускные отверстия. Клапан включат в себя также золотниковую втулку с перепускными отверстием, размещенную в корпусе с возможностью осевого перемещения таким образом, что в верхнем положении втулки обеспечивается возможность движения перекачиваемой жидкости через упомянутые перепускные отверстия корпуса и втулки на прием насоса в обход фильтрующих элементов, расположенных на входе упомянутого трубопровода. Это обеспечивает защиту насоса от срыва подачи и погружного электродвигателя от перегрева при забивании фильтрующих элементов частицами мехпримесей. Смещение золотниковой втулки в верхнее положение происходит повышении давления в затрубном пространстве под действием дифференциального поршня, шток которого размещен в осевом отверстии корпуса клапана.

Основными недостатками прототипа является недостаточная чувствительность и скорость срабатывания клапана, который реагирует на повышение давления в затрубном пространстве, вызываемом прекращением движения жидкости через фильтр, а не на само отсутствие движения перекачиваемой жидкости.

Технический результат, достигаемый при реализации полезной модели, заключается в повышении чувствительности и скорости срабатывания предохранительного клапана.

Предохранительный клапан погружного скважинного насосного агрегата для добычи нефти, обеспечивающее достижение указанного выше технического результата, включает в себя корпус с перепускным отверстием, который выполнен с возможностью подключения в трубопровод для подачи перекачиваемой жидкости на прием насоса, золотниковую втулку с перепускным отверстием, размещенную в корпусе с возможностью осевого перемещения таким образом, что в одном из положений втулки обеспечивается возможность движения перекачиваемой жидкости через упомянутые перепускные отверстия корпуса и втулки. При этом в отличии от прототипа золотниковая втулка выполнена с возможностью перемещения под воздействием потока перекачиваемой погружным насосом жидкости в положение, при котором исключается возможность движения перекачиваемой жидкости через перепускные отверстия корпуса и втулки. Между золотниковой втулкой и корпусом образована дифференциальная полость таким образом, что направление результирующей силы, действующей на золотниковую втулку при размещении предохранительного клапана в скважине, противоположно направлению воздействия на золотниковую втулку потока перекачиваемой жидкости.

Перепускные отверстия выполнены в боковой стенке корпуса и втулки, а возможность движения перекачиваемой жидкости через перепускные отверстия корпуса и втулки обеспечивается в крайнем нижнем положении золотниковой втулки относительно рабочего положения клапана в скважине.

Золотниковая втулка снабжена шариковым обратным клапаном, выполненным с возможностью перекрытия центрального отверстия втулки при движении жидкости в направлении, противоположном направлению движения потока жидкости, перекачиваемой погружным насосом.

Золотниковая втулка подпружинена в направлении воздействия на втулку потока перекачиваемой погружным насосом жидкости, при этом усилие, создаваемое пружиной, меньше упомянутой результирующей силы в любом положении золотниковой втулки.

Предохранительный клапан насосного агрегата предназначен для соединения приема насоса с затрубным пространством за шламоуловителем по ходу движения перекачиваемой жидкости при условии прекращения движения перекачиваемой жидкости через шламоуловитель.

Предохранительный клапан (рисунок 2.1) включает в себя корпус 23 с перепускными отверстиями 24 в боковой стенке, выполненный с возможностью подключения в патрубок или хвостовик за гидроциклонным сепаратором. Внутри корпуса 24 установлена золотниковая втулка 25 с радиальными перепускными отверстиями 26 в боковой стенке. Втулка 25 установлена с возможностью осевого перемещения. В крайнем нижнем положении втулки перепускные отверстия 24 и 26 совмещаются и обеспечивается возможность движения перекачиваемой жидкости из затрубного пространства на прием насоса. Между втулкой и корпусом образована дифференциальная полость 27 таким образом, что направление результирующей силы, действующей на золотниковую втулку (при наличии в полости предохранительного клапана избыточного давления, т.е. при размещении предохранительного клапана в скважине), противоположно направлению воздействия на золотниковую втулку потока перекачиваемой жидкости. Золотниковая втулка 25 подпружинена в направлении воздействия потока перекачиваемой среды, при этом усилие, создаваемое пружиной 16, меньше упомянутой результирующей силы в любом положении втулки 25. Кроме того, втулка снабжена шариковым обратным клапаном 22, выполненным с возможностью перекрытия центрального отверстия втулки при движении жидкости в нижнем направлении после остановке насоса.

Рисунок 2.1 - Клапан предохранительный

При заполнении шламоуловителя частицами мехпримесей движение жидкости через предохранительный клапан прекращается, вследствие чего шариковый клапан 22 закрывается, а золотниковая втулка 25 под действием разности давлений, возникающей вследствие наличия дифференциальной полости 27, опускается вниз и занимает крайнее нижнее положение, сжимая пружину 16. Через совмещенные перепускные отверстия 24 и 26 рабочая жидкость поступает на прием насоса.

Предохранительный клапан погружного скважинного насосного агрегата для добычи нефти, включающий в себя корпус с перепускным отверстием, который выполнен с возможностью подключения в трубопровод для подачи перекачиваемой жидкости на прием насоса, золотниковую втулку с перепускным отверстием, размещенную в корпусе с возможностью осевого перемещения таким образом, что в одном из положений втулки обеспечивается возможность движения перекачиваемой жидкости через упомянутые перепускные отверстия корпуса и втулки, отличающийся тем, что золотниковая втулка выполнена с возможностью перемещения под воздействием потока перекачиваемой погружным насосом жидкости в положение, при котором исключается возможность движения перекачиваемой жидкости через перепускные отверстия корпуса и втулки, при этом между золотниковой втулкой и корпусом образована дифференциальная полость таким образом, что направление результирующей силы, действующей на золотниковую втулку при размещении предохранительного клапана в скважине, противоположно направлению воздействия на золотниковую втулку потока перекачиваемой жидкости.

2.1.2 Патент 2480630 Российская Федерация, F04D15/02, F 04 D 13/10

Клапан перепускной для погружного центробежного электронасоса . Шрамек В.Б., Саблин А.Ю., Матвеев Д.Ф., Смирнов И.Г.; заявитель и патентообладатель общество с ограниченной ответственностью "Русская электротехническая компания". - № 2011139811/06; заяв. 29.09.2011; опуб. 27.04.2013.

Изобретение относится к нефтедобывающему оборудованию и может быть использовано при добыче пластовой жидкости из скважины, в частности для пропуска жидкости от входного модуля (фильтра) или газосепаратора на прием погружного скважинного центробежного электронасоса (ЭЦН), и для подвода жидкости из затрубного пространства к насосу в случае засорения фильтрующих элементов частицами механических примесей.

Известен предохранительный клапан погружного скважинного насосного агрегата (патент № 66417, E21B 43/38, дата публикации 2007.09.10), взятый в качестве прототипа, включающий корпус с перепускными отверстиями в боковой стенке, который выполнен с возможностью

гидравлического соединения приема насоса с затрубным пространством за шламоуловителем по ходу движения перекачиваемой жидкости при условии прекращения движения перекачиваемой жидкости через шламоуловитель, золотниковую втулку с радиальными перепускными отверстиями в боковой стенке. Втулка установлена с возможностью осевого перемещения. В крайнем нижнем положении втулки перепускные отверстия корпуса и втулки совмещаются, и обеспечивается возможность движения перекачиваемой жидкости из затрубного пространства на прием насоса. В частности, втулка подпружинена и снабжена шариковым обратным клапаном, выполненным с возможностью перекрытия центрального отверстия втулки при движении жидкости в обратном направлении после остановки насоса.

Недостатками известного предохранительного клапана погружного скважинного насосного агрегата являются:

Низкая надежность работы клапана в виду заклинивания золотниковой втулки при попадании частиц механических примесей, содержащихся в жидкости, в зазор между корпусом и золотниковой втулкой;

Низкая вероятность безотказной работы известного клапана, связанная с низкой чувствительностью клапана, в связи с низкой скоростью перемещения золотниковой втулки в случае заполнения шламоуловителя или засорения сепаратора механическими примесями. При этом срыв подачи насоса может произойти ранее, чем золотниковая втулка переместится в положение совмещения перепускных отверстий втулки и корпуса, при котором произойдет поступление жидкости из затрубного пространства на прием насоса;

Низкая ремонтопригодность клапана, так как невозможно произвести замену деталей предохранительного клапана, не размонтировав его предварительно от патрубка сепаратора и пакер-пробки или полого цилиндрического хвостовика, разобрав при этом корпус клапана для замены деталей;

Размещение предохранительного клапана между ПЭД и нижерасположенным шламоуловителем существенно увеличивает длину всей установки ЭЦН, что создает дополнительные трудности при спуске-подъеме установки в скважине, а также приводит к возможному разрушению наиболее нагруженных элементов, например фланцевого соединения ПЭД, с последующим падением нижерасположенного оборудования на забой скважины. Увеличение массогабаритных характеристик установки приводит к повышенному износу деталей насоса и уменьшению времени безотказной работы насосной установки при ее работе в зоне повышенной кривизны скважины.

Задача изобретения - создание перепускного клапана, позволяющего обеспечить поступление пластовой жидкости на прием насоса в случае засорения фильтрующего элемента входного модуля или газосепаратора, исключив при этом возникновение аварийной ситуации, связанной со срывом подачи пластовой жидкости насосом и отказом работы установки ЭЦН с последующим ее подъемом из скважины.

Технический результат, получаемый при решении поставленной задачи, - повышение надежности работы клапана, ремонтопригодности, удобство эксплуатации, увеличение наработки на отказ установки ЭЦН.

Указанный технический результат достигается тем, что клапан перепускной для погружного центробежного электронасоса, содержащий корпус с перепускными отверстиями, который выполнен с возможностью подключения в трубопровод для подачи перекачиваемой жидкости на прием насоса, согласно изобретению снабжен валом, установленным в корпусе с возможностью вращения и соединения одного конца вала с валом входного модуля или газосепаратора, а другого конца вала - с валом электронасоса, при этом перепускные отверстия расположены в ступенчатой части корпуса под углом к центральной оси клапана по направлению потока добываемой жидкости, в каждом перепускном отверстии установлен обратный клапан, включающий седло и запорный элемент, установленный в корпусе обратного клапана с возможностью перемещения.

Выполнение перепускных отверстий под углом к центральной оси клапана по направлению потока добываемой жидкости позволяет уменьшить гидравлическое сопротивление протекающей жидкости из затрубного пространства через перепускные отверстия клапана в случае засорения ниже расположенного входного модуля или газосепаратора, что увеличивает напор насоса, его производительность, повышает надежность работы клапана, предотвращая срыв подачи насоса, что увеличивает наработку на отказ установки ЭЦН.

Установка в перепускных отверстиях обратных клапанов позволяет повысить чувствительность срабатывания клапана при повышении давления в затрубном пространстве, что повышает быстродействие и надежность работы клапана, предотвращая срыв подачи насоса.

Выполнение корпуса клапана сборным, состоящим из двух частей, позволяет улучшить условия сборки/разборки клапана, что повышает ремонтопригодность клапана.

Установка в корпусе клапана опоры вала с помощью разъемного соединения, например резьбового, повышает ремонтопригодность клапана.

Установка клапана обратного в перепускном отверстии с помощью разъемного соединения, например с помощью резьбы, позволяет быстро произвести его замену или ремонт.

Выполнение запорного элемента обратного клапана в виде шара обеспечивает герметичность обратного клапана в закрытом положении, а также при открытии клапана обеспечивает самоцентрирование шара в полости корпуса клапана. Точечный контакт шара и корпуса при перемещении шара вдоль оси обратного клапана не позволяет заклинивание его в корпусе, что повышает надежность работы перепускного клапана в целом.

Подпружинивание шара обратного клапана в противоположном

направлении воздействия на шар потока жидкости, поступающего из затрубного пространства, позволяет использовать клапан как в горизонтальных, так и наклонных скважинах, что расширяет функциональные возможности клапана.

Выполнение клапана перепускного в виде самостоятельного изделия, имеющего на корпусе и на обоих концах вала присоединительные элементы, например шлицевые муфты для соединения с валом входного модуля или газосепаратора и насосом, повышает удобство эксплуатации, ремонтопригодность клапана.

На рисунке 2.2 приведен общий вид клапана перепускного для погружного центробежного электронасоса. Клапан перепускной содержит ступенчатый корпус 1 с отверстием для прохода жидкости 2, выполненный, например, сборным, включающим верхнюю часть 3 и нижнюю часть 4 корпуса. В корпусе 1 установлен вал 5, закрепленный, в частности, в подшипниковой опоре 6, в которой установлены радиальные подшипники скольжения 7. В опоре 6 выполнены каналы 8 для прохода перекачиваемой жидкости. Подшипниковая опора 6 закреплена в корпусе 1 с помощью разъемного соединения, например резьбы. На концах вала 5 установлены шлицевые муфты 9 и 10 для соединения вала 5 с валом входного модуля или газосепаратора и валом насоса ЭЦН соответственно (не показано). В ступенчатой части корпуса 1 выполнены перепускные отверстия 11, расположенные под углом к центральной оси клапана по направлению потока добываемой жидкости. В каждом перепускном отверстии 11 установлен обратный клапан 12. Обратный клапан 12 содержит клапанную пару, включающую седло 13 и подпружиненный пружиной 14 запорный элемент (шар) 15, установленный в отверстии 16 корпуса 17 обратного клапана 12 с возможностью перемещения. Обратные клапаны 12 установлены в перепускных отверстиях 11 с помощью, например, резьбового соединения.

Рисунок 2.2 - Клапан перепускной

Корпус 1 содержит присоединительный фланец 18 с отверстиями 19 для крепежных элементов, позволяющий произвести монтаж перепускного клапана к входному модулю (не показано). Корпус 1 снабжен крепежными элементами (шпильками) 20 для соединения с корпусом насоса ЭЦН.

При включении насосной установки пластовая жидкость, находящаяся под давлением столба жидкости в скважине, поступает от входного модуля или газосепаратора (не показано), через отверстие 2 в перепускной клапан, проходит через каналы 8 подшипниковой опоры 6 и поступает на прием ЭЦН. При этом шар 15 обратного клапана 12 прижат к седлу 13 пружиной 14, что исключает подвод пластовой жидкости из затрубного пространства через перепускные отверстия 11 внутрь перепускного клапана и соответственно к приему насоса ЭЦН. При частичном или полном засорении входного модуля или газосепаратора (не показано) частицами механических примесей происходит увеличение перепада давления между давлением жидкости снаружи и жидкостью, находящейся во внутренней полости перепускного клапана. При этом происходит открытие обратного клапана 12, при котором шар 15 перемещается от седла 13, сжимая пружину 14 обратного клапана 12. Пластовая жидкость через отверстие 16 обратного клапана 12 поступает из затрубного пространства внутрь корпуса 1 перепускного клапана и далее, проходя через каналы 8 подшипниковой опоры 6, выходит из клапана и поступает на прием насоса, обеспечивая его жидкостью для продолжения работы, что предотвращает срыв подачи электронасоса.

2.2 Патентная проработка перепускного клапана

Целью патентной проработки является усовершенствование перепускного клапана для погружного центробежного электронасоса (патент № 2480630, F04D15/02, F04D13/10).

Одним из основных элементов перепускного клапана (рисунок 2.2) является обратный клапан, служащий для поступления пластовой жидкости при частичном или полном засорении входного модуля или газосепаратора частицами механических примесей. Недостатком данной конструкции является быстрое засорение обратного клапана вследствие попадание крупных частиц в отверстие обратного клапана. Данная проблема очень актуальна для электроцентробежных насосов износостойкого исполнения. Решением является установка приемной фильтрующей сетки 13 (рисунок 2.3) на пути движении пластовой жидкости в обратный клапан 1, служащей для фильтрации от крупных механических частиц. Это конструктивное внедрение позволит увеличит время работы перепускного клапана в нормальном режиме, а следовательно и срок службы насоса.

Монтаж перепускного клапана рассматриваемой конструкции осложнен по причине отсутствия проточки для установки в монтажный хомут элеватор. Решением является нарезка проточки в области головки 5 перепускного клапана, что позволит упростить процесс монтажа, увеличит его скорость и сделает его аналогичным процессу монтажа других секций насоса.

Рисунок 2.3 - Клапан перепускной модернизированный

Также в модернизированной конструкции перепускного клапаны выполнены верхняя 9 и нижняя 10 крышки, служащие для защиты от загрязнения внутренней полости на время хранения и транспортировки.

Недостатком данной конструкции модернизированного узла является увеличенный габаритный размер в осевом направлении по сравнению с рассматриваемым патентом.

3 . Устройство и принцип действия насоса

Установка ЭЦН состоит из погружного насосного агрегата (электродвигатель с гидрозащитой и насос), кабельной линии (круглого и плоского кабеля с муфтой кабельного ввода), колонны насосно-компрессорных труб, оборудования устья скважины и наземного электрооборудования: трансформатора и станции управления (или комплексного устройства) .

Погружной насосный агрегат, состоящий из насоса и электродвигателя с гидрозащитой, спускается в скважину на насосно-компрессорных трубах. Кабельная линия обеспечивает подвод электроэнергии к электродвигателю. Кабель крепится к НКТ металлическими поясами.

На длине насоса и протектора кабель - плоский, прикреплен к ним металлическими поясами и защищен от повреждения кожухами или хомутами.

Над насосами устанавливают обратный и сливной клапаны. Насос откачивает жидкость из скважины и подает ее на поверхность по колонне НКТ. Оборудование устья скважины обеспечивает подвеску на фланце обсадной колонны НКТ с электронасосом и кабелем, герметизацию труб и кабеля, а также отвод жидкости в выкидной трубопровод.

Насос погружной, центробежный, секционный, многоступенчатый. Электродвигатель погружной, трехфазный, асинхронный, маслозаполненный с короткозамкнутым ротором. Гидрозащита электродвигателя состоит из протектора и компенсатора. Протектор двухкамерный с резиновой диафрагмой и торцевыми уплотнениями вала, компенсатор с резиновой диафрагмой. Кабель трехжильный с полиэтиленовой изоляцией.

Трансформатор обеспечивает подачу необходимого напряжения к погружному электродвигателю, станция управления предназначена для управления погружным электронасосом и отключения всей установки при отключении от нормально режима ее работы.

Погружной насос, электродвигатель и гидрозащита соединяются между собой фланцами и шпильками. Валы насоса, двигателя и протектора имеют на концах шлицы и соединяются шлицевыми муфтами.

Погружной центробежный насос по принципу действия не отличается от обычных центробежных насосов, применяемых для перекачки жидкости. Отличие его в том, что он секционный, многоступенчатый, с малым диаметром рабочих ступеней - рабочих колес и направляющих аппаратов. В основном для нефтяной промышленности погружные насосы содержат от 130 до 415 ступеней.

Центробежный насос представляет собой простую гидравлическую машину, предназначенную для подъема и транспортирования по трубопроводу жидкости от одного места к другому. Насос состоит в основном из рабочего колеса с лопастями, направляющего аппарата, вала и корпуса.

Принцип действия насоса, с некоторым упрощением, можно представить себе следующим образом: жидкость, засасываемая через фильтр и всасывающий клапан, поступает по патрубку на лопасти вращающегося колеса, под действием которого она приобретает скорость и давление. Погружной насос имеет много ступеней и этот процесс повторяется в каждой ступени приобретая большую скорость и давление. Кинетическая энергия жидкости преобразуется в давление в спиральном канале. На выходе из насоса поток жидкости собирается и направляется в колонну насосно-компрессорных труб.

Основными параметрами насоса являются: подача, напор, высота всасывания, потребляемая мощность и коэффициент полезного действия. Параметры насоса указывают при работе его на воде.

3.1 Компоновка насоса

Погружные электроцентробежные насосы спроектированы по секционному принципу и в общем случае состоят из входного модуля (МВ), средних секций (СС), верхней секции (СВ), обратного (КО) и спускных (КС) клапанов (рисунок 3.1, а). При высоком содержании газа в состав насоса включается модуль насосный - газосепаратор (МНГ) (рисунок 3.1, б). Конструкцией предусмотрены варианты комплектации насосов нижней секцией (СН), имеющей приемную сетку, при этом из состава насоса исключается входной модуль (рисунок 3.1, в). При использовании нижней секции газосепаратор не может быть включен в состав насоса. В состав насоса при высоком содержании газа может быть включен газосепаратор с приемной сеткой (МНГН) (рисунок 3.1, г). При этом нет необходимости во входном модуле.

Насосы, в зависимости от поперечного габарита, изготавливаются трех групп: 5, 5А и 6. Группа условно определяет минимальный внутренний диаметр эксплуатационной колонны, что составляет для группы 5 - 123,7 мм, 5А - 130 мм, 6 - 148,3 мм. Диаметр корпуса насоса соответственно равен 92, 103 и 114 мм.

Рисунок 3.1 - Компоновка ЭЦН

3.2 Устройство модулей и работа насоса

Погружной насос собирается из входного модуля МВ, модуля насосного-газосепаратора МНГ, средней секции СС (одна + четыре), верхней секции СВ, которые соединяются между собой за фланцы при помощи шпилек и болтов.

Обратный клапан ввинчивается в ловильную головку верхней секции, спускной клапан ввинчивается в обратный. Привод насоса осуществляется погружным электродвигателем. Перекачиваемая жидкость через входной модуль поступает в газосепаратор, где происходит отделение попутного газа, затем в секции насоса, где создается требуемый напор. Через обратный и спускной клапан жидкость поступает в напорный трубопровод-колонну НКТ. Обратный и спускной клапаны могут быть установлены и выше ловильной головки насоса на 6…7 насосно-компрессорных труб.

Входной модуль служит для приема и грубой очистки перекачиваемой жидкости, для соединения секций с двигателем и передачи крутящего момента от вала двигателя к валам секций насоса. Входной модуль приведен на рисунке 3.2 и состоит из основания 1, с отверстиями для прохода пластовой жидкости, в котором на подшипниках скольжения вращается вал 2. Снаружи основание обтянуто приемной сеткой 3. Для соединения вала модуля с валом протектора двигателя служит шлицевая муфта 4. При помощи шпилек 5 модуль верхним концом крепится к средней секции насоса или модулю насосному-газосепаратору. Нижним фланцем входной модуль крепится к протектору с помощью шпилек и гаек. На период транспортирования и хранения входной модуль закрыт крышками 6 и 7.

Модуль насосный-газосепаратор (газосепаратор) предназначен для уменьшения объемного содержания свободного газа на входе в секции насоса. Газосепаратор МНГ изображен на рисунке 3.3 и состоит из трубного корпуса 1 с головкой 2, основанием 3 по его концам и вала 4 с расположенными в нём деталями. В корпусе установлены гайка 5, крепящая пакет рабочих органов через упор 6, подшипник 7, распорную втулку 8, направляющие аппараты 9,10 и опорное кольцо 11. На валу расположены втулки 12 радиальных подшипников, шлицевая муфта 19, шнек 13, рабочее колесо 14, втулки 15, решетка 16 и сепараторы 17. В головку 2 запрессован переводник 18, образующий с головкой муфту перекрестного потока, снаружи головки закреплен перфорированный патрубок 20, исполняющий роль дополнительного сепарирующего узла.

На период транспортирования и хранения газосепаратор закрыт крышками 21 и 22.

Газосепаратор основанием крепится с помощью шпилек и гаек к входному модулю. Головка газосепаратора фланцем стыкуется со средней секцией насоса и крепится к ней шпильками или болтами. Соединение валов осуществляется с помощью шлицевых муфт. Основание газосепаратора имеет вариант исполнения с приемной сеткой, в этом случае входной модуль не нужен и газосепаратор стыкуется непосредственно с протектором (исполнение МНГН).

Рисунок 3.3 - Модуль насосный-газосепаратор

Работает газосепаратор следующим образом. Газожидкостная смесь попадает через входной модуль или сетку основания газосепаратора на шнек и далее к рабочим органам. За счет приобретения напора газожидкостная смесь поступает во вращающуюся камеру сепаратора, снабженную радиальными ребрами, где под действием центробежных сил газ отделяется от жидкости. Далее жидкость с периферии камеры сепаратора поступает по пазам переводника на прием насоса, а отсепарированная газожидкостная смесь попадает в полость перфорированного патрубка, где происходит дополнительное разделение газа и жидкости. Эта жидкость вытекает через отверстия патрубка, стекает снаружи по корпусу газосепаратора и снова поступает на вход. При этом снижается содержание газа в смеси, поступающей через входной модуль в газосепаратор. Газ через перфорированный патрубок отводится в затрубное пространство. Газосепараторы МНГ(К)5, МНГН(К)5 используются с насосами производительностью до 250 мі/сут, а МНГ(К)5А, МНГН(К)5А - с насосами производительностью до 400 мі/сут.

Средняя секция изображена на рисунках 3.4 и является основной частью насоса. Средняя секция состоит из корпуса 1, вала 2, пакета ступеней (рабочих колес 3 и направляющих аппаратов 4), верхнего подшипника 5, нижнего подшипника 6, промежуточных подшипников 17, верхней осевой опоры 7, головки 8, основания 9, двух ребер 10, резиновых колец 11, 13, шлицевой муфты 14 и крышек 15 и 16. Рабочие колеса и направляющие аппараты установлены последовательно. Направляющие аппараты в корпусе стянуты верхним подшипником и основанием и во время работы неподвижны. Рабочие колеса посажены через шпонку на вал, который приводит их во вращение. При вращении колес перекачиваемая жидкость получает приращение напора от ступени к ступени.

Верхний промежуточный 5 и нижний 6 подшипники являются радиальными опорами вала, а верхняя осевая опора 7 воспринимает нагрузки, действующие вдоль оси вала. Резиновые кольца 11 герметизируют внутреннюю полость секции от утечек перекачиваемой и входным модулем.

Шлицевая муфта 14 служит для соединения с валом пристыкованной секции или входного модуля или газосепаратора или протектора и передает вращение от одного вала к другому. На период транспортирования и хранения секция закрыта крышками.

Ребра 10 предназначены для защиты электрического кабеля, располагаемого между ними, от механических повреждений о стенку обсадных труб при спуске и подъеме насоса. Ребра прикреплены к основанию секции болтом с гайкой.

Обратный клапан, приведенный на рисунке 3.5, предназначен для предотвращения обратного вращения рабочих колес насоса под воздействием столба жидкости в напорном трубопроводе при остановках насоса и облегчения его повторного запуска, используется для опрессовки колонны НКТ после спуска установки в скважину.

Обратный клапан состоит из корпуса 1, с одной стороны которого имеется внутренняя коническая резьба для подсоединения спускного клапана, а с другой стороны - наружная коническая резьба для ввинчивания в ловильную головку верхней секции. Внутри корпуса размещается обрезиненное седло 2, на которое опирается тарелка 3. Тарелка имеет возможность осевого перемещения в направляющей втулке 4. Под воздействием потока перекачиваемой жидкости тарелка поднимается, тем самым открывая клапан. При остановке насоса тарелка опускается на седло под воздействием столба жидкости в напорном трубопроводе, клапан закрывается.

Рисунок 3.5 - Клапан обратный

Сливной клапан изображен на рисунке 3.6 и предназначен для слива жидкости из напорного трубопровода (колонны НКТ) при подъеме насоса из скважины. Сливной клапан состоит из корпуса 1, с одной стороны которого имеется внутренняя коническая резьба муфты для соединения к НКТ, имеющей условный диаметр 73 мм, а с другой стороны - наружная коническая резьба для ввинчивания в обратный клапан.

Рисунок 3.6 - Клапан сливной

В корпус ввернут штуцер 2, который уплотнен резиновым кольцом 3. Перед подъемом насоса из скважины конец штуцера, находящийся во внутренней полости клапана, сбивается (обламывается) специальным инструментом, и жидкость из колонны НКТ вытекает через отверстие в штуцере в затрубное пространство. На период транспортирования и хранения обратный клапан закрыт крышками 4 и 5. Погружные электродвигатели, служащие для привода центробежных насосов, асинхронные с короткозамкнутыми роторами, маслозаполненные. При частоте тока 50 Гц синхронная частота вращения вала равна 3000 об/мин. Двигатели также, как и насосы, имеют малые диаметры, различные для скважин с обсадными колоннами 140, 146 и 168 мм. В тоже время их мощность может достигать 125 кВт. В связи с этим двигатели выполняют длиной иногда более 8 м.

Для предохранения электродвигателя от попадания в его внутреннюю полость пластовой жидкости, компенсации изменения объема масла в двигателе при его нагреве и охлаждении, а также во избежание утечек масла через неплотности служит гидрозащита (протектор).

Гидрозащита расположена между двигателем и насосом и, создавая избыточное давление, одновременно подает густое масло к сальнику центробежного насоса, препятствуя утечке добываемой жидкости.

Электроэнергия подводится к погружному двигателю по специальному бронированному кабелю. Основная часть кабеля имеет круглое сечение. По погружному агрегату (насос, гидрозащита, головка двигателя) прокладывается плоский кабель, соответствующий необходимому диаметральному габариту агрегата.

Подобные документы

    Назначение и технические данные установок погружных центробежных насосов, их типы. Анализ аварийного фонда по НГДУ "Лянторнефть". Гидрозащита электродвигателя, предназначенная для предотвращения проникновения пластовой жидкости в его внутреннюю полость.

    дипломная работа , добавлен 31.12.2015

    Эксплуатационные показатели скважинного электронасосного агрегата. Параметры, характеризующие скважину: статический и динамический уровень жидкости, понижение уровня жидкости, дебит и удельный дебит скважины. Подготовка электронасоса к использованию.

    курсовая работа , добавлен 25.07.2014

    Гидравлический расчет системы подъема нефти из скважины погружным центробежным насосом. Построение графика потребного напора и определение рабочей точки. Выбор погружного электрического центробежного насоса, пересчет его характеристик на вязкую жидкость.

    курсовая работа , добавлен 13.02.2013

    Характеристика погружного насоса, погружаемого ниже уровня перекачиваемой жидкости. Анализ штанговых погружных и бесштанговых погружных насосов. Коэффициент совершенства декомпозиции системы. Знакомство с основными видами насосов погружного типа.

    курсовая работа , добавлен 18.12.2011

    Понятие о нефтяной залежи. Источники пластовой энергии. Приток жидкости к перфорированной скважине. Режимы разработки нефтяных месторождений. Конструкция оборудования забоев скважин. Кислотные обработки терригенных коллекторов. Техника перфорации скважин.

    презентация , добавлен 24.10.2013

    Погружной центробежный модульный насос, его конструктивные особенности и назначение, основные преимущества и недостатки. Анализ причин преждевременных отказов фонда скважин, оборудованных ЭЦН. Техническое обслуживание и правила эксплуатации насоса.

    курсовая работа , добавлен 26.02.2015

    Эксплуатация газовых скважин, методы и средства диагностики проблем, возникающих из-за скопления жидкости. Образование конуса обводнения; источник жидкости; измерение давления по стволу скважины как способ определения уровня жидкости в лифтовой колонне.

    реферат , добавлен 17.05.2013

    Эксплуатация скважин центробежными погружными насосами. Насосы погружные центробежные модульные типа ЭЦНД. Установка ПЦЭН специального назначения и определение глубины его подвески. Элементы электрооборудования установки и погружной насосный агрегат.

    дипломная работа , добавлен 27.02.2009

    История освоения Приобского нефтяного месторождения. Геологическая характеристика: продуктивные пласты, водоносные комплексы. Динамика показателей разработки и фонда скважин. Подбор установки электрического центробежного насоса. Расчет капитальных затрат.

    дипломная работа , добавлен 26.02.2015

    Техническое описание, устройство и принцип работы насоса ЦНСМ 60-99. Порядок установки и подготовка к работе. Инструкции по эксплуатации и меры безопасности. Характерные неисправности и методы их устранения. Вибродиагностика, центровка насосного агрегата.