Основной парниковый газ атмосферы. Парниковый эффект. Сокращение выбросов парниковых газов

Парниковый газ - это смесь нескольких прозрачных атмосферных газов, которые практически не пропускают тепловое излучение Земли. Рост их концентрации ведет к глобальным и необратимым изменениям климата. Различают несколько видов основных парниковых газов. Концентрация в атмосфере каждого из них по-своему влияет на тепловой эффект.

Основные виды

Различают несколько типов газообразных веществ, относящихся к наиболее значимым парниковым газам:

  • водяные пары;
  • углекислый газ;
  • закись азота;
  • метан;
  • фреоны;
  • ПФУ (перфторуглероды);
  • ГФУ (гидрофторуглероды);
  • SF6 (гексафторид серы).

Выявлено около 30 приводящих к парниковому эффекту. Влияние на тепловые процессы Земли вещества оказывают в зависимости от количества и силы воздействия на одну молекулу. По характеру возникновения в атмосфере парниковые газы делят на естественные и антропогенные.

Водяной пар

Распространенным парниковым газом является Его количество в атмосфере Земли превышает концентрацию диоксида углерода. Водяной пар имеет естественное происхождение: внешние факторы не способны влиять на его увеличение в окружающей среде. Регулирует количество молекул водяного испарения температура Мирового океана и воздуха.

Важная характеристика свойств водяного пара - обратная положительная связь с углекислым газом. Установлено, что парниковый эффект, спровоцированный выбросом увеличивается примерно вдвое благодаря воздействию молекул водяного испарения.

Таким образом, водяной пар как парниковый газ - это мощный катализатор антропогенного потепления климата. Рассматривать его влияние на парниковые процессы стоит только в совокупности со свойствами положительной связи с углекислым газом. Сам по себе водяной пар не приводит к таким глобальным изменениям.

Углекислый газ

Занимает ведущее место среди парниковых газов антропогенного происхождения. Установлено, что около 65% глобального потепления связано с увеличенным выбросом диоксида карбона в атмосферу Земли. Основным фактором повышения концентрации газа является, конечно же, производственно-техническая деятельность человека.

Сжигание топлива занимает первое место (86% из общего выброса углекислого газа) среди источников выделения диоксида углерода в атмосферу. К прочим причинам относят сжигание биологической массы - в основном лесных массивов - и производственные выбросы.

Углекислый парниковый газ - это наиболее эффективная движущая сила глобального потепления. После попадания в атмосферу диоксид углерода совершает большой путь через все ее слои. Время, которое требуется для выведения 65% углекислого газа из воздушной оболочки, называют эффективным периодом пребывания. Парниковые газы в атмосфере в виде диоксида углерода сохраняются на протяжении 50-200 лет. Именно высокая продолжительность присутствия углекислого газа в окружающей среде играет значительную роль в процессах парникового эффекта.

Метан

Попадает в атмосферу естественным и антропогенным способом. Несмотря на то что его концентрация гораздо ниже количества углекислого газа, действует метан как более значимый парниковый газ. 1 молекула метана оценивается в механизме парникового эффекта в 25 раз сильнее, чем молекула диоксида углерода.

В настоящее время в атмосфере содержится около 20% метана (из 100% парниковых газов). Искусственным путем метан попадает в воздух вследствие производственных выбросов. Естественным механизмом образования газа считают излишний распад органических веществ и избыточное горение лесной биомассы.

Оксид азота (I)

Закись азота рассматривают как третий по значимости парниковый газ. Это вещество, оказывающее отрицательное действие на озоновый слой. Установлено, что около 6% парникового эффекта приходится на оксид азота одновалентного. Соединение действует в 250 раз сильнее, чем углекислый газ.

Монооксид диазота появляется в атмосфере Земли естественным способом. Он имеет положительную связь с озоновым слоем: чем больше концентрация оксида, тем выше степень разрушения. С одной стороны, уменьшение озона снижает процессы парникового эффекта. В то же время радиоактивное излучение гораздо опаснее для планеты. Роль озона в процессах глобального потепления изучается, и мнения специалистов на этот счет разделяются.

ПФУ и ГФУ

Углеводороды с частичным замещением фтора в структуре молекулы - это парниковые газы антропогенного происхождения. Влияние подобных веществ на процессы глобального потепления в совокупности составляет около 6%.

ПФУ попадают в атмосферу в результате производства алюминия, электротехнических приборов и растворителей различных веществ. ГФУ представляют собой соединения, в которых водород частично замещен галогенами. Используются на производстве и в аэрозолях с целью замены разрушающих озоновый слой веществ. Имеют высокий потенциал глобального потепления, но безопаснее для атмосферы Земли.

Гексафторид серы

Используется как изоляционное вещество в электроэнергетической промышленности. Соединению свойственно долгое время сохраняться в слоях атмосферы, что обуславливает длительное и обширное поглощение инфракрасных лучей. Даже небольшое количество значительно повлияет на состояние климата в будущем.

Парниковый эффект

Процесс можно пронаблюдать не только на Земле, но и на соседней Венере. Ее атмосфера в настоящий момент состоит полностью из углекислого газа, что привело к повышению температуры на поверхности до 475 градусов. Специалисты уверены, что избежать той же участи Земле помогли океаны: частично поглощая углекислый газ, они способствуют выведению его из окружающей воздушной среды.

Выбросы парниковых газов в атмосферу закрывают доступ для тепловых лучей, что приводит к повышению температуры на Земле. Глобальное потепление чревато серьезными последствиями в виде увеличения площади Мирового океана, учащения природных катаклизмов и осадков. Под угрозой становится существование видов в прибрежных зонах и островах.

В 1997 году ООН приняла Киотский протокол, который создан для того, чтобы контролировать количество выбросов на территории каждого из государств. Экологи уверены, что полностью решить проблему глобального потепления уже не удастся, но значительно смягчить происходящие процессы остается возможным.

Методы ограничения

Выбросы парниковых газов можно снизить, соблюдая несколько правил:

  • исключить неэффективное использование электроэнергии;
  • повысить коэффициент полезного действия природных ресурсов;
  • увеличить число лесов, вовремя предотвращать лесные пожары;
  • использовать экологически чистые технологии в производстве;
  • внедрять применение возобновляемых или неуглеродоводородных источников энергии.

Парниковые газы в России выбрасываются в связи с обширным производством электроэнергии, добычей полезных ископаемых и развитой промышленностью.

Основной задачей науки становится изобретение и внедрение экологически чистого вида топлива, освоение нового подхода к переработке отходных материалов. Поэтапная реформа производственных стандартов, жесткий контроль технической сферы и бережное отношение каждого к окружающей среде могут существенно снизить Глобального потепления уже не избежать, но процесс еще поддается контролю.

Данные научных исследований предоставляют информацию о том, что без уменьшения массы парниковых газов в земной атмосфере человечеству ухудшения климата на планете не избежать.

Откуда они взялись?

Парниковые газы, находясь в атмосферах планет, способствуют возникновению некоторого опасного эффекта. Он назван соответственно – парниковым. С одной стороны, без этого явления наша планета никогда не смогла бы согреться настолько, чтобы на ней зародилась жизнь. С другой – всё хорошо в меру и до определённого момента. Поэтому речь пойдёт о проблемах цивилизации, связанных с явлением парниковых газов, которое, сыграв свою положительную роль, со временем поменяло своё качество и стало темой для дискуссий, исследований и всеобщей тревоги.

Много миллионов лет назад Солнце, нагревая Землю, постепенно превратило её саму в источник энергии. Частично её тепло уходило в космическое пространство. Кроме того, оно отражалось газами в атмосфере и согревало слои воздуха, приближённые к земле. Такому процессу, схожему с сохранением тепла под прозрачной плёнкой в теплицах, учёные дали название «парниковый эффект». А газы, которые его провоцируют, они назвали также просто. Их наименование – «парниковые газы».

На заре установления климата Земли возникновению данного эффекта способствовала активная деятельность вулканов. Выбросы в виде водяного пара и углекислого газа в огромном количестве задерживались в атмосфере. Получался гиперпарниковый эффект, подогревавший Мировой океан практически до точки кипения. И только с появлением зелёной биосферы, поглощающей углекислый газ атмосферы, температурный режим планеты постепенно нормализовался.

Однако всеобщая индустриализация, постоянный рост производственных мощностей поменяли не только химический состав парниковых газов, но и суть этого явления.

Их знают наперечёт

Парниковый газ представляет собой соединение, которое задерживается в атмосфере Земли и становится преградой её тепловым излучениям на пути к космосу. Отданное планетой тепло снова возвращается обратно. В результате показатели средней температуры неуклонно растут, что может привести к непредсказуемым последствиям.

Излишний нагрев планеты происходит по причине разницы в прозрачности слоёв атмосферы. Солнечные лучи проходят через них легко. Для ультрафиолета атмосфера прозрачна. Тепловым инфракрасным излучениям трудно пробиться через её нижние слои, где собираются парниковые газы. Дело в том, что они создают уплотнение.

Киотский протокол содержит чёткий перечень парниковых газов, с присутствием которых в атмосфере Земли следует бороться. К таковым относятся:

  • водяной пар;
  • углекислый газ;
  • метан;
  • закись азота;
  • фреоны;
  • озон;
  • перфторуглероды;
  • гексафторид серы.

Опасный потенциал

Водяной пар относят к естественным газам, однако его участие в образовании парникового эффекта достаточно велико. Его нельзя недооценивать.

Углекислый газ рассматривают как один главных факторов, влияющих на климат планеты. Его доля в атмосфере составляет около 64%, и ровно настолько велика его роль в глобальном потеплении. Основные источники его выброса в атмосферу таковы:

  • вулканические извержения;
  • процесс обмена веществ биосферы;
  • сжигание биомассы и ископаемого топлива;
  • уничтожение лесов;
  • производственные процессы.

Метан не распадается в атмосфере на протяжении 10 лет и представляет собой серьёзную угрозу климату Земли. Его парниковый эффект в 28 раз превышает возможности углекислого газа, а в перспективе 20-ти лет, если не прекратить его эмиссию, это превосходство дойдёт до 84-х. Главные его источники носят антропогенный характер. Это:

  • сельскохозяйственное производство, в частности, выращивание риса;
  • скотоводство (увеличение поголовья и, как следствие, нечистот);
  • сжигание леса.

Частично парниковый метан появляется в результате утечки в процессе разработки месторождений каменного угля. Он также выделяется при добыче природного газа.

Фреоны представляют собой особую опасность для экологии. В основном их используют в аэрозолях и холодильных установках.

Закись азота – парниковый газ, который находится на одном из ведущих мест по количеству в атмосфере и влиянию на глобальное потепление. Источники его происхождения и применения:

  • производство минеральных удобрений в химической промышленности;
  • пищевая промышленность использует его в качестве пропеллента;
  • в отраслях машино- и ракетостроения его применяют в двигателях.

Озон, вернее та его часть, которую относят к вредным газам, создающим парниковый эффект, находится в нижних слоях тропосферы. Увеличиваясь вблизи земли, его количество может наносить вред зелёным насаждениям, повреждая их листья и уменьшая способность к фотосинтезу. В основном он образуется в результате реакции взаимодействия окисей углерода, оксидов азота с парами воды, солнечным светом и летучими органическими соединениями в присутствии кислорода. Основные источники этих веществ в атмосфере – выбросы парниковых газов промышленными объектами, транспортными средствами и химические растворители.

Перфторуглероды – результат производства алюминия, растворителей и электроники. Они используются в диэлектриках, носителях тепла, хладагентах, смазочных маслах и даже в качестве искусственной крови. Их можно получить только путём химического синтеза. Как большинство фторсодержащих газов, они опасны для окружающей среды. Их парниковый потенциал оценивают в сотни раз выше, чем у углекислого газа.

Гексафторид серы – также один из тех парниковых газов, какие указаны в Киотском протоколе как потенциально опасные. Он применяется в сфере пожаротушения, в электронной и металлургической промышленности в качестве технологической среды, известна его роль как хладагента и т.д. Его выбросы надолго остаются в атмосфере и активно накапливают инфракрасные излучения.

Пути решения проблемы

Мировое сообщество прикладывает немало усилий для выработки единой программы действий в направлении сокращения выбросов парниковых газов.

Одной из серьёзных составляющих экологической политики является утверждение стандартов на выхлопы топливных продуктов сгорания и сокращение использования топлива за счёт перехода автопромышленности на выпуск электромобилей.

Работа атомных электростанций, не использующих уголь и нефтепродукты, косвенно уже позволяет сократить количество углекислого газа в атмосфере в разы.

Транснациональные газовые и нефтяные перерабатывающие компании координируют свою деятельность с международными экологическими организациями и правительствами для борьбы с выбросами метана. К ним уже присоединилось немало крупных добывающих нефть и газ государств, таких как Нигерия, Мексика, Норвегия, США, Россия.

Существенное сокращение или запрет на вырубку лесов также может ощутимо повлиять на оздоровление окружающей среды. По мере своего роста деревья поглощают огромное количество углекислого газа. Во время спиливания они его выделяют. Снижение процента вырубки леса под пахотные земли в тропических странах уже внесло весомый вклад в оптимизацию мировых показателей выбросов парниковых газов.

Частью всемирной экологической программы являются новые европейские ограничения технологических характеристик бойлеров и водонагревателей. Все разработки таких бытовых приборов впредь должны соответствовать требованиям контроля за выбросом углекислого газа в процессе их применения. Ожидается, что при условии внедрения новых технологий на протяжении шести лет этот парниковый газ уменьшит своё присутствие в атмосфере на 136 млн. тонн.

Возобновляемая энергия – вызов парниковым газам

В последнее время появилась модная тенденция инвестировать в развитие отраслей возобновляемой энергии. Процент её использования в масштабах мирового потребления медленно, но неуклонно растёт. Её называют «зелёной энергией», так как она берёт своё начало в естественных регулярных процессах, которые происходят в природе.

Ресурсы, такие как водные потоки, ветер, солнечный свет, приливы, человек теперь научился применять для технических нужд. Процент мирового энергопотребления из возобновляемых источников к 2014 году уже подтянулся к 20-ти. Каждый год на 30% больше используется энергии ветра во всём мире. Увеличивается производство фотоэлектрических панелей. В Испании и Германии растёт популярность солнечных электростанций.

Работающие двигатели автомобилей выбрасывают парниковый газ в огромных количествах. Доказательство этого факта стало стимулом к поиску «зелёных» видов бензина. Недавние исследования показали, что биоэтанол можно рассматривать как альтернативу моторному топливу из нефтепродуктов. В рамках экологической программы Бразилия уже на протяжении нескольких лет занимается производством этанола из сахарного тростника. Его вырабатывают в больших количествах из зерновых, рисовой и кукурузной целлюлозы США. Биотопливо уже начинает частично заменять бензин во многих станах мира.

Вклад каждого

Парниковые газы и их разрушительную работу нельзя увидеть или почувствовать. Пока это всё нам ещё трудно представить. Однако данная проблема может коснуться уже следующего поколения. Думая не только о себе, люди могут принять участие в решении этой задачи уже сегодня. Если каждый из нас посадит дерево, вовремя затушит костёр в лесу, пересядет при первой же возможности на автомобиль, «заправленный» электричеством, он обязательно оставит свой след в будущем.

Метан - наиболее важный представитель органических веществ в атмосфере. Его концентрация существенно превышает концентрацию остальных органических соединений. В 60-е и 70-е годы количество метана в атмосфере возрастало со скоростью 1% в год, и это объяснялось хозяйственной деятельностью человечества.

Увеличение содержания метана в атмосфере способствует усилению парникового эффекта, так как метан интенсивно поглощает тепловое излучение Земли в инфракрасной области спектра на длине волны 7,66 мкм. Метан занимает второе место после углекислого газа по эффективности поглощения теплового излучения Земли. Вклад метана в создание парникового эффекта составляет примерно 30% от величины, принятой для углекислого газа. С ростом содержания метана изменяются химические процессы в атмосфере, что может привести к ухудшению экологической ситуации на Земле. Естественно возникает вопрос об управлении химическими и физическими процессами, в которых принимает участие метан. Если молекулы метана попадают в атмосферу, то они вовлекаются в процессы переноса и вступают в химические реакции, которые хорошо известны как качественно, так и количественно. Управление процессами непосредственно в атмосфере в глобальном масштабе практически исключено. До настоящего времени направленное воздействие на атмосферные процессы удавалось осуществить только путём изменения мощности антропогенных источников. Поэтому важно понимать природу естественных и антропогенных источников метана и оценивать их мощность с достаточной степенью достоверности.

История обнаружения атмосферного метана. История обнаружения атмосферного метана коротка. Присутствие его в атмосфере открыто сравнительно недавно, в 1947 году. Концентрация метана невелика. В атмосферной химии для концентрации обычно используют долевые единицы, что связано с тем, что количество примесных молекул, таких, как метан, невелико. Часто концентрации выражают в частях на миллион или миллиард. Например, если концентрация примеси равна одной части на миллион, то это означает, что в одном моле воздуха присутствует 1(Г 6 молей примеси. Для удобства вводят обозначения типа ррт, что означает количество частей на миллион.

Классификация метана по его происхождению. Источники метана разнообразны. Метан называется биогенным, если он возникает в результате химической трансформации органического вещества. Если метан образуется в результате деятельности бактерий, то он называется бактериальным (или микробным) метаном. Если его возникновение обязано термохимическим процессам, то он называется термогенным. Бактериальный метан образуется в донных отложениях болот и других водоемов, в результате процессов пищеварения в желудках насекомых и животных (преимущественно жвачных). Термогенный метан возникает в осадочных породах при их погружении на глубины 3--10 км, где осадочные породы подвергаются химической трансформации в условиях высоких температур и давлений. Метан, возникший в результате химических реакций неорганических соединений, называется абиогенным. Он образуется обычно на больших глубинах в мантии земли.

Общее содержание метана в атмосфере и его концентрация. В настоящее время концентрация атмосферного метана составляет 1,8 ppm. Общее количество метана в атмосфере оценивают в пределах 4600--5000 Тг (Тг = 1012 г). В южном полушарии концентрация метана несколько ниже, чем в северном полушарии. Такое различие обычно связывают с меньшей мощностью источников метана в южном полушарии: считается, что основные источники метана расположены на континентах, а океаны не вносят заметного вклада в глобальный поток метана. Время жизни метана в атмосфере 8-12 лет.

Метан находится в атмосфере в основном в приземном слое, который называется тропосферой и толщина которого составляет 11-15 км. Концентрация метана мало зависит от высоты в интервале от поверхности Земли до тропопаузы, что обусловлено большой скоростью перемешивания по высоте в пределах 0-12 км (1 месяц) в сравнении со временем жизни метана в атмосфере.

Изменение концентрации метана во времени.

Изменение концентрации метана в атмосфере Земли примечательно тем, что позволяет наглядно представить себе характер и масштаб влияния человеческой деятельности на глобальные процессы. Концентрация метана в 70-е годы увеличивалась в атмосфере со скоростью 0,8--1,2% в год, что эквивалентно увеличению концентрации на 16,5 ppbv (ppbv -- одна часть на миллиард) в год, а прирост его массы в атмосфере составлял 45 Тг/год. Возникает вопрос, всегда ли было так, что концентрация атмосферного метана ежегодно возрастала. Оказывается, можно проследить изменения в концентрации метана на протяжении 150 тысяч лет и более. С этой целью отбирают керны в материковых льдах Антарктиды или Гренландии. В частности, большое число данных получено на российской станции "Восток" в Антарктиде. Лед в кернах имеет разный возраст: чем глубже он расположен, тем он старше. Состав воздуха в пустотах льда на различной глубине соответствует составу атмосферы в момент образования льда.

Изменение концентрации метана в атмосфере Земли за последние 140 тыс. лет представлены на рис. 1. Кривая осадков характеризует оледенения: мало осадков - оледенение, много осадков - потепление. Из рис. 1 видно, что во время оледенений концентрация метана падала и иногда достигала рекордно низких значений (например, 0,35 ppm). Важно отметить, что концентрация метана до новой эры никогда не превышала 0,7 ppm. Естественно, что до новой эры интенсивность хозяйственной деятельности человечества была незначительной и поэтому наблюдаемая концентрация метана обеспечивалась только естественными факторами.

Рис. 1. Зависимость концентрации метана в атмосфере Земли (1) и зависимость осадков от времени, отн. ед. (2) 22 Данные взяты из Соросовского Образовательного журнала, том 6, № 3,. 2000.


Рис. 2. Изменения содержания метана в атмосфере и населения Земли во времени 33 см. там же

Анализы показывают, что от Рождества Христова вплоть до XVII века концентрация метана в атмосфере Земли была практически постоянной и составляла примерно 0,7 ppm Затем концентрация метана стала повышаться и одновременно начался интенсивный рост населения Земли (рис. 2) На рис. 2 видно, что за последние 300 лет концентрация метана возросла на 1,1 ppm. Можно полагать, что этот прирост обусловлен деятельностью человечества. Из данных рис. 2 следует, что в период с начала 60-х годов по настоящее время произошло удвоение прироста концентрации метана, составившее примерно 0,55 ppm и за это же время удвоилось население земного шара.

Интересное событие произошло в 80-90-е годы: прирост концентрации метана начал падать. Причины этого не вполне ясны Высказывалось робкое предположение, что это связано с тем, что Россия смогла починить свои газопроводы и это привело к остановке в росте концентрации метана. Однако простые оценки показывают , что Россия не имеет к этому никакого отношения и что, скорее всего, включились некоторые факторы пока неизвестной природы. Более детальное рассмотрение указанных явлений требует знаний о механизмах поступления метана в атмосферу и о процессах вывода метана из атмосферы.

Стоки метана.

Рассмотрение поведения метана в атмосфере начнем с процессов исчезновения метана. Дело в том, что процессы вывода метана из атмосферы известны в количественном отношении гораздо полнее, чем процессы, обеспечивающие поступление метана в атмосферу. Интенсивность процессов стока метана должна быть примерно равной интенсивности источников метана, что

позволяет более надежно судить о мощности источников метана в атмосфере.

Молекула метана довольно устойчива, и ее нелегко вывести из атмосферы. Метан малорастворим в воде (30 см 3 газа растворяется в одном литре воды), и удаление его из атмосферы с помощью осадков не происходит. Для реального удаления из атмосферы метан необходимо переводить в нелетучие соединения или другие газообразные соединения.

Метан, как и многие другие примеси, исчезает из атмосферы, в основном в реакции с радикалом ОН:

ОН + СН 4 = Н 2 О + СНз

Если концентрация метана в атмосфере не растет, то это означает, что скорость поступления метана в атмосферу равна скорости его вывода. Поэтому количественные характеристики этой реакции между метаном и радикалом ОН чрезвычайно важны, так как ошибка в 25% приведет к ошибке примерно в 25% в расчете мощности источников метана. Параметры этой реакции определялись многократно, и тем не менее последние данные показывают, что 10-15 лет назад скорость реакции определялась завышенной примерно на 25%. Это означает, что поток метана в атмосферу с поверхности Земли составляет примерно 400, а не 500 Тг/год, как считалось ранее. Возникает естественный вопрос об источнике радикалов ОН. Необходимо отметить, что радикал ОН -- одна из наиболее реакционноспособных частиц в химических процессах. Источником радикала ОН в тропосфере является тропосферный озон (Од). Под действием ультрафиолетового света с длиной волны короче 310 нм молекулы тропосферного озона разрушаются с образованием молекулы кислорода и чрезвычайно реакционноспособного атома кислорода в возбужденном электронном состоянии (0(1 D)):

0 3 +hv (310 нм и короче) = О 2 + 0(1 D)

Атомы кислорода отрывают один атом водорода от воды и получается два радикала ОН:

0(1 D) + Н 2 О = 20Н

Итак, реакции в атмосфере, приводящие к выводу метана, таковы:

ОН + СН 4 = Н 2 0 + СНз,

СНз + О 2 СНзО 2 ,

СНзО 2 + NO = СНзО + NO 2 ,

СНзО + 0 2 = СН 2 О + НО 2 ,

HO 2 + NO = OH + NO 2 ,

2,

СН 4 + 40 2 = СН 2 О + Н 2 0 + 20з

Таким образом, в результате многоступенчатого процесса образуются по одной молекуле формальдегида и воды и две молекулы озона. NO и NO 2 (NO х) всегда присутствуют в атмосфере в количествах, достаточных для протекания реакции с их участием.

Из приведенных реакций видно образование нестабильных валентно-ненасыщенных частиц, таких, как СНзО 2 или НО 2 . Эти частицы играют важную роль в процессах в атмосфере. Формально их образование можно представить в процессах отрыва атома водорода от стабильных молекул метилгидроперекиси и перекиси водорода соответственно. Присутствие свободной валентности приводит к высокой реакционной способности, так как эти частицы стремятся к образованию стабильных связей и насыщению валентностей.

Разложение метана до конечных продуктов еще не закончено. Образующиеся молекулы формальдегида начинают участвовать в следующих трех реакциях, которые дают начало новым циклам:

СН 2 О + hv = Н 2 + СО,

СН 2 О + hv = Н + НСО,

СН 2 О + ОН = НСО + Н 2 О

В среднем для атмосферы вероятности протекания этих процессов относятся как 0,5: 0,25: 0,25 соответственно, а вторая и третья реакции дают начало следующим циклам, протекающим в присутствии NO х:

СН 2 О + hv = Н + НСО,

Н + О 2 НО 2 ,

НСО + 0 2 = СО +НО 2 ,

2,

СН 2 О + 40 2 + hv = СО + 20з + 20Н

В результате этого цикла возникают две молекулы озона и два радикала ОН. Таким образом, метан в присутствии NO х претерпевает конверсию в окислитель, каким является озон. Реакция формальдегида с радикалом ОН также приводит к образованию озона:

СН 2 О + ОН = НСО + Н 2 О,

НСО + О 2 = СО +НО 2,

H0 2 + NO = OH + N0 2 ,

NO 2 + hv = NO + О,

0 + 0 2 = 0з,

СН 2 О + 20 2 + hv = СО + Оз + Н 2 0

СО + ОН = СО 2 + Н,

Н + О 2 = НО 2 ,

HO 2 + NO = OH+NO 2 ,

NO 2 + hv = NO + О,

0 + 0 2 = 0з,

СО + 20 2 + hv = СО 2 + Оз

В итоге вместо одной исчезнувшей в атмосфере молекулы метана возникает 3,5 молекулы озона и 0,5 радикала ОН.

Химический сток в атмосфере -- это основной канал вывода метана из атмосферы. Из других стоков некоторое значение имеют поглощение метана почвенными бактериями и уход в стратосферу. Оба стока вносят вклад менее 10% в общий сток метана.

Источники выделения метана

Метан попадает в атмосферу как из естественных, так и из антропогенных источников. Мощность антропогенных источников в настоящее время существенно превышает мощность естественных. К естественным источникам метана относятся болота, тундра, водоемы, насекомые (главным образом термиты), метангидраты, геохимические процессы. К антропогенным - рисовые поля, шахты, животные, потери при добыче газа и нефти, горение биомассы, свалки. Мощность этих источников приведена в табл. 1.

Таблица 1. Мощность естественных и антропогенных источников метана (в Тг/год) Данные взяты из Соросовского Образовательного журнала, том 6, № 3,. 2000.

Из данных табл. 1 видно, что болота, рисовые поля и животные вносят доминирующий вклад в образование общего потока в атмосферу. Природа образования метана в таких источниках, как болота, озера, рисовые поля, жвачные животные, насекомые, свалки, примерно одинакова - ферментативная переработка клетчатки.

Интенсивность выделения метана из болот меняется в широких пределах. Эмиссия метана от западносибирских болот, которые являются достаточно типичным представителем северных болот, определенная с применением методов газовой хроматографии, составляет примерно 9 мг метана в ч/м 2 . В среднем эмиссия метана из сибирских болот может достигать 20 Тг/год, что довольно много в сопоставлении с общим потоком метана от болот (50--70 Тг). Нужно сказать, что точность определения эмиссии метана от болот затруднена большим разбросом величин эмиссии при измерении даже на близко расположенных участках. Например, величина эмиссии метана в западносибирских болотах колебалась в интервале от 0,1 до 40 мг/(м 2 ч). Большой поток метана от рисовых полей обусловлен резким ускорением транспорта метана внутри полостей в стеблях риса, так как диффузия метана происходит в воздушной среде, а не в воде. Поток метана с рисовых полей достигает в среднем 2,3 мг/(м 2 ч).

Количество крупного рогатого скота в мире -- около 1,5 млрд голов. Одна корова производит в сутки около 250 л чистого метана. Этого количества метана хватит, чтобы вскипятить 20 л воды. В развитых странах на свалки вывозится примерно 1,8 кг мусора в день в расчете на одного человека, в России 0,6 кг соответственно. Примерно 10% этой массы может конвертироваться в метан. Следовательно, в России производится 60 г метана в сутки в расчете на одного человека.

Шахтный метан возникает в процессе трансформации органических остатков в уголь под влиянием высоких давлений и температур. Можно считать, что в глубинах земли происходит пиролиз органических веществ. Растительные остатки содержат большое количество лигнина, в структуре которого имеется много метильных групп. В ходе термической переработки происходит освобождение метильных радикалов, которые затем отрывают атом водорода от органических молекул и превращаются в метан. Добыча 1 т угля сопровождается выделением 13 м 3 чистого метана.

Аналогичный механизм образования метана наблюдается и при горении биомассы. Основной источник метана, выделяющегося при горении биомассы, находится в Африке, где широко практикуется сжигание соломы при подготовке почвы для нового урожая. Использование дерева для приготовления пищи и отопления дает незначительный вклад. Величины потоков метана приведены в табл. 1. Видно, что страны бывшего СССР производят около 5--15% от общего потока метана в атмосферу. В качестве источника не включены насекомые, так как количество термитов на территории бывшего СССР было крайне незначительным. Гидраты метана также не включены, так как оценка запасов гидратов метана в мире и странах бывшего СССР пока очень приблизительна. Следует отметить, что и оценка потока метана от гидратов метана приводит пока к незначительной величине.

Вывод: Роль метана в экологических процессах исключительно велика. В настоящее время насущной задачей для многих регионов земного шара, и в том числе для России, являются инвентаризация существующих источников метана, выявление и прогнозирование появления новых источников. Это важно ещё и потому, что при экспериментальных измерениях мощностей отдельных источников выявлена значительно меньшая мощность, чем предполагалось. Потому не исключена возможность, что мы столкнёмся в будущем с проблемой дефицита метана из традиционных источников, который удастся ликвидировать только на основе изучения нетрадиционных источников.

Парниковые газы поглощают отраженную энергию Солнца, делая атмосферу Земли более теплой. Большая часть солнечной энергии достигает поверхности планеты, а часть отражается обратно в космос. Некоторые газы, присутствующие в атмосфере, поглощают отраженную энергию и перенаправляют ее обратно на Землю в виде тепла. Газы, ответственные за это, называются парниковыми газами, поскольку они играют ту же роль, что и прозрачный пластик или стекло, покрывающие теплицу.

Парниковые газы и деятельность человека

Некоторые парниковые газы выделяются естественным путем в результате , вулканической активности и биологических процессов. Однако, начиная с возникновения промышленной революции на рубеже XIX века, люди выпускали в атмосферу все большее количество парниковых газов. Это увеличение ускорилось с развитием нефтехимической промышленности.

Парниковый эффект

Тепло, отраженное от парниковых газов, производит измеримое потепление поверхности Земли и океанов. Это оказывает широкомасштабное воздействие на лед, океаны, и .

Основные парниковые газы Земли:

Водяной пар

Водяной пар является наиболее сильным и важным из парниковых газов Земли. Количество водяного пара в не может быть непосредственно изменено деятельностью человека - оно определяется температурой воздуха. Чем теплее, тем выше скорость испарения воды с поверхности. В результате, увеличенное испарение приводит к большей концентрации водяного пара в нижней атмосфере, способной поглощать инфракрасное излучение и отражать его вниз.

Углекислый газ (CO2)

Углекислый газ является самым важным парниковым газом. Он высвобождается в атмосферу в результате сжигания ископаемого топлива, извержения вулканов, разложения органических веществ и передвижения транспортных средств. Процесс производства цемента приводит к выбросу большого количества углекислого газа. Вспашка земли также вызывает высвобождение большого количества углекислого газа, обычно хранящегося в почве.

Растительная жизнь, которая поглощает СО2 в , является важным естественным хранилищем углекислого газа. также может поглощать растворенный в воде CO2.

Метан

Метан (CH4) - второй наиболее важный парниковый газ после двуокиси углерода. Он более сильный, чем CO2, но присутствует в атмосфере в гораздо меньших концентрациях. CH4 может находится в атмосфере в течение более короткого времени, по сравнению с CO2 (время пребывания CH4 составляет примерно 10 лет, по сравнению с сотнями лет для CO2). Природные источники метана включают в себя: водно-болотные угодья; горение биомассы; процессы жизнедеятельности крупного рогатого скота; выращивание риса; добыча, сжигание и переработка нефти или природного газа и др. Основным природным поглотителем метана является сама атмосфера; другим - почва, где метан окисляется бактериями.

Как и в случае с СО2, деятельность человечества увеличивает концентрацию СН4 быстрее, чем метан поглощается естественным образом.

Тропосферный озон

Следующим наиболее значительным парниковым газом является тропосферный озон (O3). Он образуется в результате загрязнения воздуха и его следует отличать от естественного стратосферного О3, который защищает нас от многих разрушительных солнечных лучей. В нижних частях атмосферы озон возникает при разрушении других химических веществ (например, оксидов азота). Этот озон считается парниковым газом, но он недолговечен и хотя способен в значительной степени способствовать потеплению, его последствия обычно локальные, а не глобальные.

Второстепенные парниковые газы

Второстепенными парниковыми газами выступают оксиды азота и фреоны. Они являются потенциально опасными для . Однако в связи с тем, что их концентрации не такие значительные как вышеупомянутых газов, оценка их влияния на климат полностью не изучена.

Оксиды азота

Оксиды азота находятся в атмосфере благодаря естественным биологическим реакциям в почве и воде. Тем не менее большое количество выделяемого оксида азота вносит значительный вклад в глобальное потепление. Основным источником является производство и использование синтетических удобрений в сельскохозяйственной деятельности. Моторные автомобили выделяют оксиды азота при работе на ископаемых видах топлива, таких как бензин или дизельное топливо.

Фреоны

Фреоны представляют собой группу углеводородов с различными видами использования и характеристиками. Хлорфторуглероды широко используются в качестве хладагентов (в кондиционерах и холодильниках), вспенивателей, растворителей и др. Их производство уже запрещено в большинстве стран, но они по-прежнему присутствуют в атмосфере и наносят ущерб озоновому слою. Гидрофторуглероды служат альтернативой более вредным озоноразрушающим веществам, и вносят гораздо меньший вклад в глобальное изменение климата на планете.

Водяной пар

Анализ пузырьков воздуха во льдах свидетельствует о том, что сейчас в атмосфере Земли больше метана, чем в любое время за последние 400000 лет. С 1750 года средняя глобальная атмосферная концентрация метана возросла на 150 процентов от приблизительно 700 до 1745 частей на миллиард по объему (ppbv) в 1998 году. За последнее десятилетие, хотя концентрация метана продолжала расти, скорость роста замедлилась. В конце 1970-х годов темпы роста составили около 20 ppbv в год. В 1980-х годов рост замедлился до 9-13 ppbv в год. В период с 1990 по 1998 наблюдался рост между 0 и 13 ppbv в год. Недавние исследования (Dlugokencky и др.) показывают устойчивую концентрацию 1751 ppbv между 1999 и 2002 гг.

Метан удаляется из атмосферы посредством нескольких процессов. Баланс между выбросами метана и процессами его удаления в конечном итоге определяет атмосферные концентрации и время пребывания метана в атмосфере. Доминирующим является окисление с помощью химической реакции с гидроксильными радикалами (ОН). Метан реагирует с ОН в тропосфере, производя СН 3 и воду. Стратосферное окисление также играет некоторую (незначительную) роль в устранении метана из атмосферы. На эти две реакции с ОН приходится около 90% удаления метана из атмосферы. Кроме реакции с ОН известно еще два процесса: микробиологическое поглощение метана в почвах и реакция метана с атомами хлора (Cl) на поверхности моря. Вклад этих процессов 7% и менее 2% соответственно.

Озон

Озон является парниковым газом. В то же время озон необходим для жизни, поскольку защищает Землю от жёсткого ультрафиолетового излучения Солнца.

Однако ученые различают стратосферный и тропосферный озон. Первый (так называемый озоновый слой) является постоянной и основной защитой от вредного излучения. Второй же считается вредным, так как может переноситься к поверхности Земли, где вредит живым существам, и к тому же неустойчив и не может быть надежной защитой. Кроме того, повышение содержания именно тропосферного озона внесло вклад в рост парникового эффекта атмосферы, который (по наиболее широко распространенным научным оценкам) составляет около 25% от вклада СО 2

Большая часть тропосферного озона образуется, когда оксиды азота (NO x), окись углерода (СО) и летучие органические соединения вступают в химические реакции в присутствии солнечного света. Транспорт, промышленные выбросы, а также некоторые химические растворители являются основными источниками этих веществ в атмосфере. Метан, атмосферная концентрация которого значительно возросла в течение последнего столетия, также способствует образованию озона. Время жизни тропосферного озона составляет примерно 22 дня, основными механизмами его удаления являются связывание в почве, разложение под действием ультрафиолетовых лучей и реакции с радикалами OH и HO 2 .

Концентрации тропосферного озона отличаются высоким уровнем изменчивости и неравномерности в географическом распределении. Существует система мониторинга уровня тропосферного озона в США и Европе , основанная на спутниках и наземном наблюдении. Поскольку для образования озона требуется солнечный свет, высокие уровни озона наблюдаются обычно в периоды жаркой и солнечной погоды. Нынешняя средняя концентрация тропосферного озона в Европе в три раза выше, чем в доиндустриальную эпоху.

Увеличение концентрации озона вблизи поверхности имеет сильное негативное воздействие на растительность, повреждая листья и угнетая их фотосинтетический потенциал. В результате исторического процесса увеличения концентрации приземного озона, вероятно, была подавлена способность поверхности суши поглощать СО 2 и поэтому увеличились темпы роста СО 2 в XX веке. Ученые (Sitch и др. 2007) полагают, что это косвенное воздействие на климат увеличило почти вдвое тот вклад, который концентрация приземного озона внесла в изменения климата. Снижение загрязнения нижней тропосферы озоном может компенсировать 1-2 десятилетия эмиссии СО 2 , при этом экономические издержки будут относительно невелики (Wallack и Ramanathan, 2009).

Оксид азота

Парниковая активность закиси азота в 298 раз выше, чем у углекислого газа.

Фреоны

Парниковая активность фреонов в 1300-8500 раз выше чем у углекислого газа. Основным источником фреона являются холодильные установки и аэрозоли.

См. также

  • Киотский протокол (CO 2 , CH 4 , HFCs, PFCs, N 2 O, SF 6)

Примечания

Ссылки

  • Point Carbon – аналитическая компания, специализирующаяся на предоставлении независимой оценки, прогнозов, и информации о торговле выбросами парниковых газов.
  • “Г И С – атмосфера” автоматическая система мониторинга качества атмосферного воздуха

Wikimedia Foundation . 2010 .