Иррациональные уравнения сложные и способы их решения. Простейшие иррациональные уравнения. Основные свойства степеней

Решение иррациональных уравнений.

В этой статье мы поговорим о способах решения простейших иррациональных уравнений.

Иррациональным уравнением называется уравнение, которое содержит неизвестное под знаком корня.

Давайте рассмотрим два вида иррациональных уравнений , которые очень похожи на первый взгляд, но по сути сильно друг от друга отличаются.

(1)

(2)

В первом уравнении мы видим, что неизвестное стоит под знаком корня третьей степени. Мы можем извлекать корень нечетной степени из отрицательного числа, поэтому в этом уравнении нет никаких ограничений ни на выражение, стоящее под знаком корня, ни на выражение, стоящее в правой части уравнения. Мы можем возвести обе части уравнения в третью степень, чтобы избавиться от корня. Получим равносильное уравнение:

При возведении правой и левой части уравнения в нечетную степень мы можем не опасаться получить посторонние корни.

Пример 1 . Решим уравнение

Возведем обе части уравнения в третью степень. Получим равносильное уравнение:

Перенесем все слагаемые в одну сторону и вынесем за скобки х:

Приравняем каждый множитель к нулю, получим:

Ответ: {0;1;2}

Посмотрим внимательно на второе уравнение: . В левой части уравнения стоит квадратный корень, который принимает только неотрицательные значения. Поэтому, чтобы уравнение имело решения, правая часть тоже должна быть неотрицательной. Поэтому на правую часть уравнения накладывается условие:

Title="g(x)>=0"> - это условие существования корней .

Чтобы решить уравнение такого вида, нужно обе части уравнения возвести в квадрат:

(3)

Возведение в квадрат может привести к появлению посторонних корней, поэтому нам надо уравнения:

Title="f(x)>=0"> (4)

Однако, неравенство (4) следует из условия (3): если в правой части равенства стоит квадрат какого-то выражения, а квадрат любого выражения может принимать только неотрицательные значения, следовательно левая часть тоже должна быть неотрицательна. Поэтому условие (4) автоматически следует из условия (3) и наше уравнение равносильно системе:

Title="delim{lbrace}{matrix{2}{1}{{f(x)=g^2{(x)}} {g(x)>=0} }}{ }">

Пример 2 . Решим уравнение:

.

Перейдем к равносильной системе:

Title="delim{lbrace}{matrix{2}{1}{{2x^2-7x+5={(1-x)}^2} {1-x>=0} }}{ }">

Решим первое уравнение системы и проверим, какие корни удовлетворяют неравеству.

Неравеству title="1-x>=0">удовлетворяет только корень

Ответ: x=1

Внимание! Если мы в процессе решения возводим обе части уравнения в квадрат, то нужно помнить, что могут появиться посторонние корни. Поэтому либо нужно переходить к равносильной системе, либо в конце решения СДЕЛАТЬ ПРОВЕРКУ: найти корни и подставить их в исходное уравнение.

Пример 3 . Решим уравнение:

Чтобы решить это уравнение, нам также нужно возвести обе части в квадрат. Давайте в этом уравнении не будем заморачиваться с ОДЗ и условием существования корней, а просто в конце решения сделаем проверку.

Воозведем обе части уравнения в квадрат:

Перенесем слагаемое, содержащее корень влево, а все остальные слагаемые вправо:

Еще раз возведем обе части уравнения в квадрат:

По тереме Виета:

Сделаем проверку. Для этого подставим найденные корни в исходное уравнение. Очевидно, что при правая часть исходного уравнения отрицательна, а левая положительна.

При получаем верное равенство.

Зав. кафедрой математики ДВГГУ

Системы иррациональных, логарифмических и показательных уравнений

Традиционно в контрольные измерительные материалы для проведения единого государственного экзамена по математике включаются задачи позволяющие проверить умения выпускников решать различные системы уравнений. Как правило, это системы из двух уравнений с двумя переменными. Уравнения, входящие в систему могут быть как алгебраическими, в том числе иррациональными, так и трансцендентными. В рамках этой статьи рассмотрим основные методы решения систем с двумя переменными иррациональных, логарифмических и показательных уравнений.

Прежде чем непосредственно переходить к методам решения систем уравнений напомним основные определения и свойства различных функций, которые могут входить в уравнения системы.

Напомним, что два уравнения с двумя неизвестными образуют систему уравнений , если ставится задача о нахождении таких значений переменных, которые являются решениями каждого из уравнений.

Решением системы двух уравнений с двумя неизвестными называется упорядоченная пара чисел , при подстановке которых в систему вместо соответствующих переменных, получаются верные числовые равенства.

Решить систему уравнений – означает найти все ее решения.

Процесс решения системы уравнений, как и процесс решения уравнения, состоит в последовательном переходе с помощью некоторых преобразований от данной системы к более простой. Обычно пользуются преобразованиями, которые приводят к равносильной системе, в этом случае не требуется проверка найденных решений. Если же были использованы неравносильные преобразования, то обязательна проверка найденных решений.

Иррациональными называют уравнения, в которых переменная содержится под знаком корня или под знаком операции возведения в дробную степень.

Следует отметить, что

1. Все корни четной степени, входящие в уравнения, являются арифметическими. Другими словами, если подкоренное выражение отрицательно, то корень лишен смысла; если подкоренное выражение равно нулю, то корень также равен нулю; если подкоренное выражение положительно, то и значение корня положительно.

2. Все корни нечетной степени, входящие в уравнение, определены при любом действительном значении подкоренного выражения. При этом корень отрицателен, если подкоренной выражение отрицательно; равен нулю, если подкоренное выражение равно нулю; положителен, если подкоренное выражение положительно.

Функции y = https://pandia.ru/text/78/063/images/image002_247.gif" width="37" height="24 src="> являются возрастающими на своей области определения.

При решении систем иррациональных уравнений используются два основных метода: 1) возведение обеих частей уравнений в одну и туже степень; 2) введение новых переменных.

При решении систем иррациональных уравнений первым методом следует помнить, что при возведении обеих частей уравнения, содержащего корни четной степени, в одну и туже степень, получается уравнение, которое является следствием первоначального, в связи с этим, в процессе решения могут появиться посторонние корни..gif" width="161" height="61">

Решение. Чтобы избавиться от иррациональности введем новые переменные. Пусть ……………………… (1),

тогда первоначальная система примет вид: ..gif" width="92" height="59">. Возведя обе части первого уравнения в квадрат, второго – в четвертую степень, получим систему: , откуда находим:

Нетрудно убедиться в том, что найденное решение последней системы является решением исходной системы.

Ответ: (6; 5)

Пример 2. Решить систему уравнений

Решение. 1..gif" width="51" height="27">.gif" width="140" height="27 src=">………………………..(2). Введем новую переменную: положим …………………….(3) и подставим в уравнение (2), получим квадратное уравнение от переменной : ..gif" width="56" height="23 src="> является посторонним, так как через обозначили арифметический корень..gif" width="84 height=27" height="27">. Возведем обе части уравнения в квадрат и выразим : .

Подставим, полученное выражение во второе уравнение первоначальной системы: https://pandia.ru/text/78/063/images/image026_45.gif" width="147" height="24 src=">. Возведем обе части полученного уравнения в квадрат, при этом, чтобы не расширить область допустимых значений полученного уравнения, потребуем, чтобы https://pandia.ru/text/78/063/images/image028_36.gif" width="297" height="24 src=">.gif" width="65" height="23 src=">.gif" width="56" height="41 src="> является посторонним.

Найдем значение у при : https://pandia.ru/text/78/063/images/image034_32.gif" width="199" height="59 src=">

Решение. 1. Заметим, что правая часть первого уравнения должна быть неотрицательной, т. е..gif" width="225" height="24">..gif" width="48" height="21">. Подставим их во второе уравнение и найдем значения переменной :

https://pandia.ru/text/78/063/images/image041_28.gif" width="140" height="24 src=">.gif" width="39" height="20 src=">, пара (10; 5) не является решением первоначальной системы.

https://pandia.ru/text/78/063/images/image044_23.gif" width="140" height="24 src=">.gif" width="39" height="20">. Нетрудно убедиться в том, что найденная пара чисел является решением первоначальной системы.

Ответ: (-10; -5)

Для успешного решения показательных и логарифмических систем уравнений, вспомним определение и свойства логарифма.

Логарифмом числа b по основанию а, называется показатель степени, в которую нужно возвести число а, чтобы получить число b .

Основные свойства логарифмов:

1) https://pandia.ru/text/78/063/images/image047_24.gif" width="125" height="25">;

2) https://pandia.ru/text/78/063/images/image049_23.gif" width="120" height="41">;

3) https://pandia.ru/text/78/063/images/image051_23.gif" width="99 height=45" height="45">.

4) https://pandia.ru/text/78/063/images/image053_22.gif" width="93" height="24 src=">; 9)

5) https://pandia.ru/text/78/063/images/image056_20.gif" width="53" height="24 src=">;

Перечислим основные свойства показательной и логарифмической функций:

1) Область определения функции , где - всё множество действительных чисел; функции https://pandia.ru/text/78/063/images/image058_21.gif" width="77" height="21 src="> - множество положительных действительных чисел.

2) Множество значений функции - множество положительных действительных чисел; функции https://pandia.ru/text/78/063/images/image060_20.gif" width="35" height="19">обе функции возрастают; если - обе функции убывают.

Замечание. В соответствии со вторым свойством, при решении логарифмических уравнений необходимо либо выяснять область допустимых значений уравнения, либо после решения делать проверку.

Показательным называется трансцендентное уравнение, в котором неизвестное входит в показатель степени некоторых величин. При решении показательных уравнений используются два основных метода:

1) переход от уравнения ……….(1) к уравнению ;

2) введение новых переменных.

Иногда приходится применять искусственные приемы.

Первый метод решения показательных уравнений основан на следующей теореме:

Если , то уравнение равносильно уравнению .

Перечислим основные приемы сведения показательного уравнения к уравнению вида (1).

1. Приведение обеих частей уравнения к одному основанию.

2. Логарифмирование обеих частей уравнения (если они строго положительные) по одинаковому основанию.

Замечание. Логарифмировать можно, вообще говоря, по любому основанию, но обычно логарифмируют по одному из оснований степеней, входящих в уравнение.

3. Разложение левой части уравнения на множители и сведение уравнения к совокупности нескольких уравнений вида (1).

Логарифмическое уравнение – это трансцендентное уравнение, в котором неизвестное входит в аргумент логарифма.

При решении логарифмических уравнений используются два основных метода:

1) переход от уравнения к уравнению вида;

2) введение новых переменных.

Замечание. Так как область определения логарифмической функции только множество положительных действительных чисел, при решении логарифмических уравнений необходимо либо находить область допустимых значений уравнения (ОДЗ), либо после нахождения решений уравнения делать проверку.

Решение простейшего логарифмического уравнения вида

https://pandia.ru/text/78/063/images/image066_13.gif" width="43" height="21 src="> - единственный корень.

Для уравнения вида https://pandia.ru/text/78/063/images/image068_13.gif" width="65" height="24">.

Пример 4. Найдите значение выражения , если пара является решением системы уравнений https://pandia.ru/text/78/063/images/image072_13.gif" width="85" height="21">.

2. Так как уравнения системы содержат логарифмы по двум разным основаниям, перейдем к одному основанию 3: ..gif" width="65" height="93">..gif" width="41 height=21" height="21">, делаем вывод что - посторонний корень. Из первого уравнения последней системы находим значение при : https://pandia.ru/text/78/063/images/image082_11.gif" width="131 height=21" height="21">

Пример 5. Найдите наибольшую сумму , если пара является решением системы уравнений https://pandia.ru/text/78/063/images/image023_49.gif" width="15" height="17"> из второго уравнения системы: ..gif" width="161" height="21">. Получили показательное уравнение от одной переменной.

Воспользуемся свойствами степени: . В уравнение входят степени с двумя разными основаниями. Стандартным приемом перехода к одному основанию является деление обеих частей уравнения на одну из степеней с наибольшим показателем..gif" width="164" height="49"> . Стандартным методом решения такого вида показательного уравнения является замена переменной. Пусть (замечаем, что на основании свойств показательной функции, значение новой переменной должно быть положительным), тогда получим уравнение https://pandia.ru/text/78/063/images/image092_10.gif" width="41" height="41">; . Решаем совокупность двух уравнений: . Получаем: ; .

Из уравнения https://pandia.ru/text/78/063/images/image023_49.gif" width="15" height="17">:

https://pandia.ru/text/78/063/images/image097_11.gif" width="68" height="41 src=">.gif" width="67" height="23 src=">. Таким образом, пары и https://pandia.ru/text/78/063/images/image083_11.gif" width="37" height="19 src="> и выберем из них наибольшую, которая очевидно равна 3.

Рассмотрим несколько примеров «комбинированных» систем уравнений в которые входят уравнения различных видов: иррациональные, логарифмические, показательные.

Пример 6. Решить систему уравнений https://pandia.ru/text/78/063/images/image072_13.gif" width="85" height="21">,

2. Преобразуем систему, воспользовавшись свойствами степени и логарифма:

https://pandia.ru/text/78/063/images/image104_9.gif" width="69" height="24 src="> (1), тогда второе уравнение системы примет вид: . Решим это дробно-рациональное уравнение, учитывая, что . Получим: ; https://pandia.ru/text/78/063/images/image023_49.gif" width="15" height="17"> через .

При https://pandia.ru/text/78/063/images/image109_8.gif" width="77" height="24 src=">.gif" width="104" height="24 src=">. Решим это уравнение: , так как должен быть положительным, то это посторонний корень; https://pandia.ru/text/78/063/images/image110_8.gif" width="49 height=41" height="41">, получаем .

При https://pandia.ru/text/78/063/images/image115_7.gif" width="65" height="24 src=">.gif" width="116" height="24 src=">. Мы уже нашли, что , следовательно равен нулю может быть только второй сомножитель произведения: https://pandia.ru/text/78/063/images/image120_7.gif" width="85" height="28">. Очевидно, что - посторонний корень. Следовательно, еще одним решением системы является пара .

Изучая алгебру, школьники сталкиваются с уравнениями многих видов. Среди тех из них, которые наиболее простые, можно назвать линейные, содержащие одну неизвестную. Если переменная в математическом выражении возводится в определенную степень, то уравнение называют квадратным, кубическим, биквадратным и так далее. Указанные выражения могут содержать рациональные числа. Но существуют также уравнения иррациональные. От прочих они отличаются наличием функции, где неизвестное находится под знаком радикала (то есть чисто внешне переменную здесь можно увидеть написанной под квадратным корнем). Решение иррациональных уравнений имеет свои характерные особенности. При вычислении значения переменной для получения правильного ответа их следует обязательно учитывать.

«Невыразимые словами»

Не секрет, что древние математики оперировали в основном рациональными числами. К таковым относятся, как известно, целые, выражаемые через обыкновенные и десятичные периодические дроби представители данного сообщества. Однако ученые Среднего и Ближнего Востока, а также Индии, развивая тригонометрию, астрономию и алгебру, иррациональные уравнения тоже учились решать. К примеру, греки знали подобные величины, но, облекая их в словесную форму, употребляли понятие «алогос», что означало «невыразимые». Несколько позднее европейцы, подражая им, называли подобные числа «глухими». От всех остальных они отличаются тем, что могут быть представлены только в форме бесконечной непериодической дроби, окончательное числовое выражение которой получить просто невозможно. Поэтому чаще подобные представители царства чисел записываются в виде цифр и знаков как некоторое выражение, находящееся под корнем второй или большей степени.

На основании вышесказанного попробуем дать определение иррациональному уравнению. Подобные выражения содержат так называемые «невыразимые числа», записанные с использованием знака квадратного корня. Они могут представлять собой всевозможные довольно сложные варианты, но в своей наипростейшей форме имеют такой вид, как на фото ниже.

Преступая к решению иррациональных уравнений, перво-наперво необходимо вычислить область допустимых значений переменной.

Имеет ли смысл выражение?

Необходимость проверки полученных значений вытекает из свойств Как известно, подобное выражение приемлемо и имеет какой-либо смысл лишь при определенных условиях. В случаях корня четной степени все подкоренные выражения должны быть положительными или равняться нулю. Если данное условие не выполняется, то представленная математическая запись не может считаться осмысленной.

Приведем конкретный пример, как решать иррациональные уравнения (на фото ниже).

В данном случае очевидно, что указанные условия ни при каких значениях, принимаемых искомой величиной, выполняться не могут, так как получается, что 11 ≤ x ≤ 4. А значит, решением может являться только Ø.

Метод анализа

Из вышеописанного становится понятно, как решать иррациональные уравнение некоторых типов. Здесь действенным способом может оказаться простой анализ.

Приведем ряд примеров, которые снова наглядно это продемонстрируют (на фото ниже).

В первом случае при внимательном рассмотрении выражения сразу оказывается предельно ясно, что истинным оно быть не может. Действительно, ведь в левой части равенства должно получаться положительное число, которое никак не способно оказаться равным -1.

Во втором случае сумма двух положительных выражений может считаться равной нулю, лишь только когда х - 3 = 0 и х + 3 = 0 одновременно. А подобное опять невозможно. И значит, в ответе снова следует писать Ø.

Третий пример очень похож на уже рассмотренный ранее. Действительно, ведь здесь условия ОДЗ требуют, чтобы выполнялось следующее абсурдное неравенство: 5 ≤ х ≤ 2. А подобное уравнение аналогичным образом никак не может иметь здравых решений.

Неограниченное приближение

Природа иррационального наиболее ясно и полно может быть объяснена и познана только через нескончаемый ряд чисел десятичной дроби. А конкретным, ярким примером из членов этого семейства является πи. Не без оснований предполагается, что эта математическая константа была известна с древних времен, используясь при вычислении длин окружности и площади круга. Но среди европейцев ее впервые применили на практике англичанин Уильям Джонс и швейцарец Леонард Эйлер.

Возникает эта константа следующим образом. Если сравнивать самые разные по длине окружности, то отношение их длин и диаметров в обязательном порядке равны одному и тому же числу. Это и есть πи. Если выразить его через обыкновенную дробь, то приблизительно получим 22/7. Впервые это сделал великий Архимед, портрет которого представлен на рисунке выше. Именно поэтому подобное число получило его имя. Но это не явное, а приближенное значение едва ли не самого удивительного из чисел. Гениальный ученый с точностью до 0,02 нашел искомую величину, но, по сути, данная константа не имеет реального значения, а выражается как 3,1415926535… Она представляет собой бесконечный ряд цифр, неограниченно приближаясь к некоему мифическому значению.

Возведение в квадрат

Но вернемся к иррациональным уравнениям. Чтобы отыскать неизвестное, в данном случае очень часто прибегают к простому методу: возводят обе части имеющегося равенства в квадрат. Подобный способ обычно дает хорошие результаты. Но следует учитывать коварство иррациональных величин. Все полученные в результате этого корни необходимо проверять, ведь они могут не подойти.

Но продолжим рассмотрение примеров и постараемся найти переменные вновь предложенным способом.

Совсем несложно, применив теорему Виета, найти искомые значения величин после того, как в результате определенных оперций у нас образовалось квадратное уравнение. Здесь получается, что среди корней будут 2 и -19. Однако при проверке, подставив полученные значение в изначальное выражение, можно убедиться, что ни один из этих корней не подходит. Это частое явление в иррациональных уравнениях. Значит, наша дилемма вновь не имеет решений, а в ответе следует указать пустое множество.

Примеры посложней

В некоторых случаях требуется возводить в квадрат обе части выражения не один, а несколько раз. Рассмотрим примеры, где требуется указанное. Их можно увидеть ниже.

Получив корни, не забываем их проверять, ведь могут возникнуть лишние. Следует пояснить, почему такое возможно. При применении подобного метода происходит в некотором роде рационализация уравнения. Но избавляясь от неугодных нам корней, которые мешают производить арифметические действия, мы как бы расширяем существующую область значений, что чревато (как можно понять) последствиями. Предвидя подобное, мы и производим проверку. В данном случае есть шанс убедиться, что подходит только один из корней: х = 0.

Системы

Что же делать в случаях, когда требуется осуществить решение систем иррациональных уравнений, и у нас в наличии не одно, а целых два неизвестных? Здесь поступаем так же, как в обычных случаях, но с учетом вышеперечисленных свойств данных математических выражений. И в каждой новой задаче, разумеется, следует применять творческий подход. Но, опять же, лучше рассмотреть все на конкретном примере, представленном ниже. Здесь не просто требуется найти переменные х и у, но и указать в ответе их сумму. Итак, имеется система, содержащая иррациональные величины (см. фото ниже).

Как можно убедиться, подобная задача не представляет ничего сверхъестественно сложного. Требуется лишь проявить сообразительность и догадаться, что левая часть первого уравнения представляет собой квадрат суммы. Подобные задания встречаются в ЕГЭ.

Иррациональное в математике

Каждый раз потребность в создании новых видов чисел возникала у человечества тогда, когда ему не хватало «простора» для решения каких-то уравнений. Иррациональные числа не являются исключением. Как свидетельствуют факты из истории, впервые великие мудрецы обратили на это внимание еще до нашей эры, веке в VII. Сделал это математик из Индии, известный под именем Манава. Он отчетливо понимал, что из некоторых натуральных чисел невозможно извлечь корень. К примеру, к таковым относятся 2; 17 или 61, а также многие другие.

Один из пифагорейцев, мыслитель по имени Гиппас, пришел к тому же выводу, пытаясь производить вычисления с числовыми выражениями сторон пентаграммы. Открыв математические элементы, которые не могут быть выражены цифровыми значениями и не обладают свойствами обычных чисел, он настолько разозлил своих коллег, что был выброшен за борт корабля, в море. Дело в том, что другие пифагорейцы сочли его рассуждения бунтом против законов вселенной.

Знак радикала: эволюция

Знак корня для выражения числового значения «глухих» чисел стал использоваться при решении иррациональных неравенств и уравнений далеко не сразу. Впервые о радикале начали задумываться европейские, в частности итальянские, математики приблизительно в XIII веке. Тогда же для обозначения придумали задействовать латинскую R. Но немецкие математики в своих работах поступали иначе. Им больше понравилась буква V. В германии вскоре распространилось обозначение V(2), V(3), что призвано было выражать корень квадратный из 2, 3 и так далее. Позднее в дело вмешались нидерландцы и видоизменили знак радикала. А завершил эволюцию Рене Декарт, доведя знак квадратного корня до современного совершенства.

Избавление от иррационального

Иррациональные уравнения и неравенства могут включать в себя переменную не только под знаком квадратного корня. Он может быть любой степени. Самым распространенным способом от него избавиться является возможность возвести обе части равенства в соответствующую степень. Это основное действие, помогающее при операциях с иррациональным. Действия в четных случаях особенно не отличаются от тех, которые были уже разобраны нами ранее. Здесь должны быть учтены условия неотрицательности подкоренного выражения, а также по окончании решения необходимо производить отсев посторонних значений переменных таким образом, как было показано в рассмотренных уже примерах.

Из дополнительных преобразований, помогающих найти правильный ответ, часто используется умножение выражения на сопряженное, а также нередко требуется введение новой переменной, что облегчает решение. В некоторых случаях, чтобы отыскать значение неизвестных, целесообразно применять графики.

Муниципальное общеобразовательное учреждение

«Куединская средняя общеобразовательная школа №2»

Способы решения иррациональных уравнений

Выполнила: Егорова Ольга,

Руководитель:

Учитель

математики,

высшей квалификационной

Введение ....……………………………………………………………………………………… 3

Раздел 1. Методы решения иррациональных уравнений …………………………………6

1.1 Решение иррациональных уравнений части С……….….….……………………21

Раздел 2.Индивидуальные задания …………………………………………….....………...24

Ответы ………………………………………………………………………………………….25

Список Литературы …….…………………………………………………………………….26

Введение

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать. Одним из этих видов являются иррациональные уравнения.

Иррациональные уравнения

Уравнение, содержащее неизвестное (либо рациональное алгебраическое выражение от неизвестного) под знаком радикала, называют иррациональным уравнением . В элементарной математике решения иррациональных уравнений отыскивается в множестве действительных чисел.

Всякое иррациональное уравнение с помощью элементарных алгебраических операций (умножение, деление, возведение в целую степень обеих частей уравнения) может быть сведено к рациональному алгебраическому уравнению. При этом следует иметь в виду, что полученное рациональное алгебраическое уравнение может оказаться неэквивалентным исходному иррациональному уравнению, а именно может содержать "лишние" корни, которые не будут корнями исходного иррационального уравнения. Поэтому, найдя корни полученного рационального алгебраического уравнения, необходимо проверить, а будут ли все корни рационального уравнения корнями иррационального уравнения.

В общем случае трудно указать какой-либо универсальный метод решения любого иррационального уравнения, так как желательно, чтобы в результате преобразований исходного иррационального уравнения получилось не просто какое-то рациональное алгебраическое уравнение, среди корней которого будут и корни данного иррационального уравнения, а рациональное алгебраическое уравнение образованное из многочленов как можно меньшей степени. Желание получить то рациональное алгебраическое уравнение, образованное из многочленов как можно меньшей степени, вполне естественно, так как нахождение всех корней рационального алгебраического уравнения само по себе может оказаться довольно трудной задачей, решить которую полностью мы можем лишь в весьма ограниченном числе случаев.

Виды иррациональных уравнений

Решение иррациональных уравнений четной степени всегда вызывает больше проблем, чем решение иррациональных уравнений нечетной степени. При решении иррациональных уравнений нечетной степени изменение ОДЗ не происходит. Поэтому ниже будут рассматриваться иррациональные уравнения, степень которых является четной. Существует два вида иррациональных уравнений:

2..

Рассмотрим первый из них.

ОДЗ уравнения: f(x) ≥ 0. В ОДЗ левая часть уравнения всегда неотрицательна – поэтому решение может существовать только тогда, когда g(x) ≥ 0. В этом случае обе части уравнения неотрицательны, и возведение в степень 2 n дает равносильное уравнение. Мы получаем, что

Обратим внимание на то, что при этомОДЗ выполняется автоматически, и его можно не писать, а условие g(x) ≥ 0 необходимо проверять.

Примечание: Это очень важное условие равносильности. Во-первых, оно освобождает учащегося от необходимости исследовать, а после нахождения решений проверять условие f(x) ≥ 0 – неотрицательности подкоренного выражения. Во-вторых, акцентирует внимание на проверке условия g(x) ≥ 0 – неотрицательности правой части. Ведь после возведения в квадрат решается уравнение т. е. решаются сразу два уравнения (но на разных промежутках числовой оси!):

1. - там, где g(x) ≥ 0 и

2. - там, где g(x) ≤ 0.

Между тем многие, по школьной привычке находить ОДЗ, поступают при решении таких уравнений ровно наоборот:

а) проверяют, после нахождения решений, условие f(x) ≥ 0 (которое автоматически выполнено), делают при этом арифметические ошибки и получают неверный результат;

б) игнорируют условие g(x) ≥ 0 - и опять ответ может оказаться неверным.

Примечание: Условие равносильности особенно полезно при решении тригонометрических уравнений, в которых нахождение ОДЗ связано с решение тригонометрических неравенств, что гораздо сложнее, чем решение тригонометрических уравнений. Проверку в тригонометрических уравнениях даже условия g(x) ≥ 0 не всегда просто сделать.

Рассмотрим второй вид иррациональных уравнений.

. Пусть задано уравнение . Его ОДЗ:

В ОДЗ обе части неотрицательны, и возведение в квадрат дает равносильное уравнение f(x) = g(x). Поэтому в ОДЗ или

При таком способе решения достаточно проверить неотрицательность одной из функций – можно выбрать более простую.

Раздел 1. Методы решения иррациональных уравнений

1 метод. Освобождение от радикалов путем последовательного возведения обеих частей уравнения в соответствующую натуральную степень

Наиболее часто применяемым методом решения иррациональных уравнений является метод освобождения от радикалов путем последовательного возведения обеих частей уравнения в соответствующую натуральную степень. При этом следует иметь в виду, что при возведении обеих частей уравнения в нечетную степень полученное уравнение, эквивалентное исходному, а при возведении обеих частей уравнения в четную степень полученное уравнение будет, вообще говоря, неэквивалентным исходному уравнению. В этом легко убедиться, возведя обе части уравнения в любую четную степень. В результате этой операции получается уравнение , множество решений которого представляет собой объединение множеств решений: https://pandia.ru/text/78/021/images/image013_50.gif" width="95" height="21 src=">. Однако, несмотря на этот недостаток, именно процедура возведения обеих частей уравнения в некоторую (часто четную) степень является самой распространенной процедурой сведения иррационального уравнения к рациональному уравнению.

Решить уравнение:

Где - некоторые многочлены. В силу определения операции извлечения корня в множестве действительных чисел допустимые значения неизвестного https://pandia.ru/text/78/021/images/image017_32.gif" width="123 height=21" height="21">..gif" width="243" height="28 src=">.

Так как обе части 1 уравнения возводились в квадрат, может оказаться, что не все корни 2 уравнения будет являться решениями исходного уравнения, необходима проверка корней.

Решить уравнение:

https://pandia.ru/text/78/021/images/image021_21.gif" width="137" height="25">

Возводя обе части уравнения в куб, получим

Учитывая, что https://pandia.ru/text/78/021/images/image024_19.gif" width="195" height="27">(Последнее уравнение может иметь корни, которые, вообще говоря, не являются корнями уравнения ).

Возводим обе части этого уравнения в куб: . Перепишем уравнение в виде х3 – х2 = 0 ↔ х1 = 0, х2 = 1. проверкой устанавливаем, что х1 = 0 – посторонний корень уравнения (-2 ≠ 1), а х2 = 1 удовлетворяет исходному уравнению.

Ответ: х = 1.

2 метод. Замена смежной системой условий

При решении иррациональных уравнений, содержащих радикалы четного порядка, в ответах могут появится посторонние корни, выявить которые не всегда просто. Чтобы легче было выявить и отбросить посторонние корни, в ходе решений иррациональных уравнений его сразу же заменяют смежной системой условий. Дополнительные неравенства в системе фактически учитывают ОДЗ решаемого уравнения. Можно находить ОДЗ отдельно и учитывать его позднее, однако предпочтительнее применять именно смешанные системы условий: меньше опасность что-то забыть, не учесть в процессе решения уравнения. Поэтому в некоторых случаях рациональнее использовать способ перехода к смешанным системам.

Решить уравнение:

Ответ: https://pandia.ru/text/78/021/images/image029_13.gif" width="109 height=27" height="27">

Данное уравнение равносильно системе

Ответ: уравнение решений не имеет.

3 метод. Использование свойств корня n-ой степени

При решении иррациональных уравнений используются свойства корня n-ой степени. Арифметическим корнем n- й степени из числа а называют неотрицательное число, n- я степень числа которого равна а . Если n – четное(2n ), то а ≥ 0, в противном случае корень не существует. Если n – нечетное(2 n+1 ), то а – любое и = - ..gif" width="45" height="19"> Тогда:

2.

3.

4.

5.

Применяя любую из этих формул, формально (без учета указанных ограничений), следует иметь ввиду, что ОДЗ левой и правой частей каждой из них могут быть различными. Например, выражение определено при f ≥ 0 и g ≥ 0 , а выражение - как при f ≥ 0 и g ≥ 0 , так и при f ≤ 0 и g ≤ 0.

Для каждой из формул 1-5 (без учета указанных ограничений) ОДЗ правой ее части может быть шире ОДЗ левой. Отсюда следует, что преобразования уравнения с формальным использованием формул 1-5 «слева - направо» (как они написаны) приводят к уравнению, являющемуся следствием исходного. В этом случае могут появится посторонние корни исходного уравнения, поэтому обязательным этапом в решении исходного уравнения является проверка.

Преобразования уравнений с формальным использованием формул 1-5 «справа – налево» недопустимы, так как возможно суждение ОДЗ исходного уравнения, а следовательно, и потеря корней.

https://pandia.ru/text/78/021/images/image041_8.gif" width="247" height="61 src=">,

являющееся следствием исходного. Решение этого уравнения сводится к решению совокупности уравнений .

Из первого уравнения этой совокупности находим https://pandia.ru/text/78/021/images/image044_7.gif" width="89" height="27"> откуда находим . Таким образом корнями данного уравнения могут быть только числа (-1) и (-2). Проверка показывает, что оба найденных корня удовлетворяют данному уравнению.

Ответ: -1,-2.

Решите уравнение: .

Решение: на основании тождеств первое слагаемое заменить на . Заметить, что как сумма двух неотрицательных чисел левой части. «Снять» модуль и после приведения подобных членов решить уравнение. Так как , то получаем уравнение . Так как и , то и https://pandia.ru/text/78/021/images/image055_6.gif" width="89" height="27 src=">.gif" width="39" height="19 src=">.gif" width="145" height="21 src=">

Ответ: х = 4,25.

4 метод. Введения новых переменных

Другим примером решения иррациональных уравнений является способ введения новых переменных, относительно которых получается либо более простое иррациональное уравнение, либо рациональное уравнение.

Решение иррациональных уравнений путем замены уравнения его следствием (с последующей проверкой корней) можно проводить следующим образом:

1. Найти ОДЗ исходного уравнения.

2. Перейти от уравнения к его следствию.

3. Найти корни полученного уравнения.

4. Проверить, являются ли найденные корни корнями исходного уравнения.

Проверка состоит в следующем:

А) проверяется принадлежность каждого найденного корня ОДЗ исходного уравнения. Те корни, которые не принадлежат ОДЗ, являются посторонними для исходного уравнения.

Б) для каждого корня, входящего в ОДЗ исходного уравнения, проверяется, имеют ли одинаковые знаки левая и правая части каждого из уравнений, возникающих в процессе решения исходного уравнения и возводимых в четную степень. Те корни, для которых части какого-либо возводимого в четную степень уравнения имеют разные знаки, являются посторонними для исходного уравнения.

В) только те корни, которые принадлежат ОДЗ исходного уравнения и для которых обе части каждого из уравнений, возникающих в процессе решения исходного уравнения и возводимых в четную степень, имеют одинаковые знаки, проверяются непосредственной подстановкой в исходное уравнение.

Такой метод решения с указанным способом проверки позволяет избежать громоздких вычислений в случае непосредственной подстановки каждого из найденных корней последнего уравнения в исходное.

Решить иррациональное уравнение:

.

Множество допустимых значений этого уравнения:

Положив , после подстановки получим уравнение

или эквивалентное ему уравнение

которое можно рассматривать как квадратное уравнение относительно. Решая это уравнение, получим

.

Следовательно, множество решений исходного иррационального уравнения представляет собой объединение множеств решений следующих двух уравнений:

, .

Возведя обе части каждого из этих уравнений в куб, получим два рациональных алгебраических уравнения:

, .

Решая эти уравнения, находим, что данное иррациональное уравнение имеет единственный корень х = 2 (проверка не требуется, так как все преобразования равносильны).

Ответ: х = 2.

Решить иррациональное уравнение:

Обозначим 2x2 + 5x – 2 = t. Тогда исходное уравнение примет вид . Возведя обе части полученного уравнения в квадрат и приведя подобные члены, получим уравнение , являющееся следствием предыдущего. Из него находим t = 16 .

Возвращаясь к неизвестному х, получим уравнение 2x2 + 5x – 2 = 16, являющееся следствием исходного. Проверкой убеждаемся, что его корни х1 = 2 и х2 = - 9/2 являются корнями исходного уравнения.

Ответ: х1 = 2, х2 = -9/2.

5 метод. Тождественное преобразование уравнения

При решении иррациональных уравнений не следует начинать решение уравнение с возведения обеих частей уравнений в натуральную степень, пытаясь свести решение иррационального уравнения к решению рационального алгебраического уравнения. Сначала необходимо посмотреть, нельзя ли сделать какое-нибудь тождественное преобразование уравнения, которое может существенно упростить его решение.

Решить уравнение:

Множество допустимых значений данного уравнения:https://pandia.ru/text/78/021/images/image074_1.gif" width="292" height="45"> Разделим данное уравнение на .

.

Получим:

При а =0 уравнение решений иметь не будет; при уравнение может быть записано в виде

при данное уравнение решений не имеет, так как при любом х , принадлежащем множеству допустимых значений уравнения, выражение, стоящее в левой части уравнения, положительно;

при уравнение имеет решение

Принимая во внимание, что множество допустимых решений уравнения определяется условием , получаем окончательно:

При решением этого иррационального уравнения будет https://pandia.ru/text/78/021/images/image084_2.gif" width="60" height="19"> решением уравнения будет . При всех остальных значениях х уравнение решений не имеет.

ПРИМЕР 10:

Решить иррациональное уравнение: https://pandia.ru/text/78/021/images/image086_2.gif" width="381" height="51">

Решение квадратного уравнения системы дает два корня: х1 = 1 и х2 = 4. первый из полученных корней не удовлетворяет неравенству системы, поэтому х = 4.

Примечания.

1) Проведение тождественных преобразований позволяет обходиться без проверки.

2) Неравенство х – 3 ≥0 относится к тождественным преобразованиям, а не к области определения уравнения.

3) В левой части уравнения стоит убывающая функция, а в правой части этого уравнения расположена возрастающая функция. Графики убывающей и возрастающей функций в пересечении их областей определения могут иметь не больше одной общей точки. Очевидно, что в нашем случае х = 4 является абсциссой точки пересечения графиков.

Ответ: х = 4.

6 метод. Использование области определения функций при решении уравнений

Этот метод наиболее результативен при решении уравнений, в состав которых входят функции https://pandia.ru/text/78/021/images/image088_2.gif" width="36" height="21 src="> и найти ее область определения (f) ..gif" width="53" height="21">.gif" width="88" height="21 src=">, то нужно проверить верно ли уравнение на концах промежутка, причем, если а < 0, а b > 0, то необходима проверка на промежутках (а;0) и . Наименьшее целое число в Е(у) равно 3.

Ответ : х = 3.

8 метод. Применение производной при решении иррациональных уравнений

Чаще всего при решении уравнений с помощью метода применения производной используется метод оценки.

ПРИМЕР 15:

Решите уравнение: (1)

Решение: Так как https://pandia.ru/text/78/021/images/image122_1.gif" width="371" height="29">, или (2). Рассмотрим функцию ..gif" width="400" height="23 src=">.gif" width="215" height="49"> при всех и, следовательно, возрастает. Поэтому уравнение равносильно уравнению , имеющему корень , являющимся корнем исходного уравнения.

Ответ:

ПРИМЕР 16:

Решить иррациональное уравнение:

Область определения функции есть отрезок . Найдем наибольшее и наименьшее значение значения этой функции на отрезке . Для этого найдем производную функции f(x) : https://pandia.ru/text/78/021/images/image136_1.gif" width="37 height=19" height="19">. Найдем значения функции f(x) на концах отрезка и в точке : Значит, Но и, следовательно, равенство возможно лишь при условииhttps://pandia.ru/text/78/021/images/image136_1.gif" width="37" height="19 src=">. Проверка показывает, что число 3 – корень данного уравнения.

Ответ: х = 3.

9 метод. Функциональный

На экзаменах иногда предлагают решить уравнения, которые можно записать в виде , где - это некоторая функция.

Например, некоторые уравнения: 1) 2) . Действительно, в первом случае , во втором случае . Поэтому решать иррациональные уравнения с помощью следующего утверждения: если функция строго возрастает на множестве Х и для любого , то уравнения и т. д. равносильны на множестве Х .

Решить иррациональное уравнение: https://pandia.ru/text/78/021/images/image145_1.gif" width="103" height="25"> строго возрастает на множестве R, и https://pandia.ru/text/78/021/images/image153_1.gif" width="45" height="24 src=">..gif" width="104" height="24 src="> которое имеет единственный корень Следовательно, и равносильное ему уравнение (1) также имеет единственный корень

Ответ: х = 3.

ПРИМЕР 18:

Решить иррациональное уравнение: (1)

В силу определения квадратного корня получаем, что если уравнение (1) имеет корни, то они принадлежат множеству DIV_ADBLOCK109">

. (2)

Рассмотрим функцию https://pandia.ru/text/78/021/images/image147_1.gif" width="35" height="21"> строго возрастает на этом множестве для любого ..gif" width="100" height="41"> которое имеет единственный корень Следовательно, и равносильное ему на множестве Х уравнение (1) имеет единственный корень

Ответ: https://pandia.ru/text/78/021/images/image165_0.gif" width="145" height="27 src=">

Решение: Данное уравнение равносильно смешанной системе