Электрическая дуга включенная в цепи. Электрическая дуга, несчастный случай. Влияние электрической дуги на электрооборудование

) с большим током, низким напряжением, высокой температурой. Это явление как электрическое, так и тепловое.

Может возникать между двумя контактами при их размыкании.

Обратимся к ВАХ-диаграмме:

На данном графике у нас зависимость тока от напряжения, немного не в масштабе, но так нагляднее. Значит, есть три области:

  • в первой области у нас высокое падение напряжения у катода и малые токи - это область тлеющего разряда
  • во второй области у нас падение напряжения резко снижается, а ток продолжает увеличиваться - это переходная область между тлеющим и дуговым разрядом
  • третья область характеризует дуговой разряд - малое падение напряжения и высокая плотность тока и следовательно высокая температура.

Механизм возникновения дуги может быть следующий: контакты размыкаются и между ними возникает разряд. В процессе размыкания воздух между контактами ионизируется, обретая свойства проводника, затем возникает дуга. Зажигание дуги - это процессы ионизации воздушного промежутка, гашение дуги - явления деионизации воздушного промежутка.

Явления ионизации и деионизации

В начале горения дуги преобладают процессы ионизации, когда дуга устойчива, то процессы ионизации и деионизации происходят одинаково часто, как-только процессы деионизации начинают преобладать над процессами ионизации - дуга гаснет.

ионизация:

  • термоэлектронная эмиссия - электроны отрываются от раскаленной поверхности катодного пятна;
  • автоэлектронная эмиссия - электроны вырываются с поверхности из-за высокой напряженности электрического поля.
  • ионизация толчком - электрон вылетает с достаточной скоростью и в пути сталкивается с нейтральной частицей, в результате образуется электрон и ион.
  • термическая ионизация - основной вид ионизации, поддерживает дугу после её зажигания. Температура дуги может достигать тысяч кельвинов, а в такой среде увеличивается число частиц и их скорости, что способствует активным процессам ионизации.

деионизация:

  • рекомбинация - образование нейтральных частиц из противоположно заряженных при взаимодействии
  • диффузия - положительно заряженные частицы отправляются “за борт”, из-за действия электрического поля дуги от середины к границе

Бывают ситуации, когда при размыкании контактов дуга не загорается, тогда говорят о безыскровом разрыве. Такое возможно при малых значениях тока и напряжения, или при отключении в момент, когда значение тока проходит через ноль.

Свойства дуги постоянного тока

Дуга может возникать как при постоянном токе-напряжении, так и при переменном. Начнем рассмотрение с постоянки:

Анодная и катодная области - размер=10 -4 см; суммарное падение напряжения=15-30В; напряженность=10 5 -10 6 В/см; в катодной области происходит процесс ударной ионизации из-за высокой напряженности, образовавшиеся в результате ионизации электроны и ионы образуют плазму дуги, которая обладает высокой проводимостью, данная область отвечает за разжигание дуги.

Ствол дуги - падение напряжения пропорционально длине дуги; плотность тока порядка 10кА на см 2 , за счет чего и температура порядка 6000К и выше. В данной области дуги происходят процессы термоионизации, данная область отвечает за поддержание горения.

ВАХ дугового разряда постоянного тока

Эта кривая соответствует кривой 3 на самом верхнем рисунке. Тут есть:

  • Uз - напряжение зажигания
  • Uг - напряжение гашения

Если ток уменьшить от Io до 0 мгновенно, то получится прямая, которая лежит снизу. Эти кривые характеризуют дуговой промежуток как проводник, показывают какое напряжение нужно приложить, чтобы создать в промежутке дугу.

Чтобы погасить дугу постоянного тока, необходимо, чтобы процессы деионизации преобладали над процессами ионизации.

Сопротивление дуги:

  • можно определить из ВАХ дуги
  • активное, независимо от рода тока
  • переменная величина
  • падает с ростом тока

Если разорвать цепь амперметра под нагрузкой, то тоже можно увидеть дугу.

Свойства дуги переменного тока

Особенностью дуги переменного тока является её поведение во времени. Если посмотреть на график ниже, то видно, что дуга каждый полупериод проходит через ноль.

Видно, что ток отстает от напряжения примерно на 90 градусов. Вначале появляется ток и резко повышается напряжение до величины зажигания (Uз). Далее ток продолжает расти, а падение напряжения снижается. В точке максимального амплитудного значения тока, значение напряжения дуги минимальное. Далее ток стремится к нулю, а падение напряжения опять возрастает до значения гашения (Uг), которое соответствует моменту, когда ток переходит через ноль. Далее всё повторяется опять. Слева от временной характеристики приведена вольт-амперная характеристика.

Особенностью переменной дуги, кроме её зажигания и гашения на протяжении полупериода, является то, как ток пересекает ноль. Это происходит не по форме синусоиды, а более резко. Образуется бестоковая пауза, во время которой происходят знакомые нам процессы деионизации. То есть возрастает сопротивление дугового промежутка. И чем больше возрастет сопротивление, тем сложнее будет дуге обратно зажечься.

Если дуге дать гореть достаточно долго, то уничтожению подлежат не только контакты, но и само электрооборудование. Условия для гашения дуги заложены на стадии проектирования, постоянно внедряются новые методы борьбы с этим вредным явлением в коммутационных аппаратах.

Само по себе явление дуги не является полезным для электрооборудования, так как ведет к ухудшению эксплуатационных свойств контактов: выгорание, коррозия, механическое повреждение.

Но не всё так печально, потому что светлые умы нашли полезное применение дуговому разряду - использование в дуговой сварке, металлургии, осветительной технике, ртутных выпрямителях.

Последние статьи

Самое популярное

Электрическая дуга представляет собой дуговой разряд, который возникает между двумя электродами или же электродом и заготовкой и который позволяет произвести соединение двух и более деталей посредством сваривания.

Сварочная дуга в зависимости от среды, в которой она возникает, делится на несколько групп. Она может быть открытой, закрытой, а также в среде защитных газов.

Открытая дуга протекает на открытом воздухе посредством ионизации частиц в области горения, а также за счет паров металла свариваемых деталей и материала электродов. Закрытая дуга, в свою очередь, горит под слоем флюса. Это позволяет изменить состав газовой среды в области горения и обезопасить металл заготовок от окисления. Электрическая дуга в таком случае протекает по парам металла и ионам флюсовой присадки. Дуга, которая горит в среде защитных газов, протекает по ионам этого газа и парам металла. Это также позволяет предотвратить окисление деталей, а, следовательно, повысить надежность образуемого соединения.

Электрическая дуга различается по роду подводимого тока - переменный или постоянный - и по продолжительности горения - импульсная или же стационарная. Кроме того, дуга может иметь прямую или же обратную полярность.

По типу используемого электрода различают неплавящиеся и плавящиеся. Применение того или иного электрода напрямую зависит от характеристик, которыми обладает сварочный аппарат. Дуга, возникающая при использовании неплавящегося электрода, как видно из названия, не деформирует его. При сварке плавящимся электродом ток дуги расплавляет материал и он наплавляется на исходную заготовку.

Дуговой промежуток можно условно разделить на три характерных участка: прикатодный, прианодный, а также ствол дуги. При этом последний участок, т.е. ствол дуги, обладает наибольшей длиной, однако, характеристики дуги, а также возможность ее возникновения определяются именно околоэлектродными областями.

В целом же, характеристики, которыми обладает электрическая дуга, можно объединить в следующий список:

1. Длина дуги. Имеется в виду суммарное расстояние прикатодной и прианодной области, а также ствола дуги.

2. Напряжение дуги. Состоит из суммы на каждой из областей: ствол, прикатодная и прианодная. При этом изменение напряжения в околоэлектродных областях значительно больше, чем в оставшейся области.

3. Температура. Электрическая дуга в зависимости от состава газовой среды, материала электродов и может развивать температуру вплоть до 12 тысяч градусов Кельвина. Тем не менее, подобные пики расположены не по всей плоскости торца электрода. Поскольку даже при самой лучшей обработке на материале токопроводящей части имеются различные неровности и бугорки, благодаря которым возникает множество разрядов, которые воспринимаются как один. Конечно же, температура дуги во многом зависит от среды, в которой она горит, а также от параметров подводимого тока. К примеру, если увеличить величину тока, то, соответственно, увеличится и значение температуры.

И, наконец, вольт-амперная характеристика или ВАХ. Представляет собой зависимость напряжения от длины и величины тока.

Привет всем посетителям моего блога. Тема сегодняшней статьи электрическая дуга и защита от электрической дуги. Тема не случайная, пишу из больницы имени Склифосовского. Догадываетесь почему?

Что такое электрическая дуга

Это один из видов электрического разряда в газе (физическое явление). Также ее называют – Дуговой разряд или Вольтова дуга. Состоит из ионизированного, электрически квазинейтрального газа (плазмы).

Может возникнуть между двумя электродами при увеличении напряжения между ними, либо приближении друг к другу.

Вкратце о свойствах : температура электрической дуги, от 2500 до 7000 °С. Не маленькая температура, однако. Взаимодействие металлов с плазмой, приводит к нагреву, окислению, расплавлению, испарению и другим видам коррозии. Сопровождается световым излучением, взрывной и ударной волной, сверхвысокой температурой, возгоранием, выделением озона и углекислого газа.

В интернете есть немало информации о том, что такое электрическая дуга, каковы ее свойства, если интересно подробнее, посмотрите. Например, в ru.wikipedia.org.

Теперь о моем несчастном случае. Трудно поверить, но 2 дня назад я напрямую столкнулся с этим явлением, причем неудачно. Дело было так: 21 ноября, на работе, мне было поручено сделать разводку светильников в распаечной коробке, после чего подключить их в сеть. С разводкой проблем не возникло, а вот когда полез в щит, возникли некоторые трудности. Жаль андройд свой дома забыл, не сделал фото электрощита, а то было бы более ясно. Возможно сделаю еще, как выйду на работу. Итак, щит был очень старый — 3 фазы, нулевая шина (она же заземление), 6 автоматов и пакетный выключатель (вроде все просто), состояние изначально не вызывало доверия. Долго боролся с нулевой шиной, так как все болты были ржавые, после чего без труда посадил фазу на автомат. Все хорошо, проверил светильники, работают.

После, вернулся к щиту, чтобы аккуратно уложить провода, закрыть его. Хочу заметить, электрощит находился на высоте ~2 метра, в узком проходе и чтобы добраться до него, использовал стремянку (лестницу). Укладывая провода, обнаружил искрения на контактах других автоматов, что вызывало моргание ламп. Соответственно я протянул все контакты и продолжил осмотр остальных проводов (чтобы 1 раз сделать и не возвращаться больше к этому). Обнаружив, что один контакт на пакетнике имеет высокую температуру, решил протянуть его тоже. Взял отвертку, прислонил к винту, повернул, бах! Раздался взрыв, вспышка, меня отбросило назад, ударившись об стену, я упал на пол, ничего не видно (ослепило), щит не переставал взрываться и гудеть. Почему не сработала защита мне не известно. Чувствуя на себе падающие искры я осознал, что надо выбираться. Выбирался на ощупь, ползком. Выбравшись из этого узкого прохода, начал звать напарника. Уже на тот момент я почувствовал, что с моей правой рукой (ей я держал отвертку) что-то не так, ужасная боль ощущалась.

Вместе с напарником мы решили, что нужно бежать в медпункт. Что было дальше, думаю не стоит рассказывать, всего обкололи и в больницу. Никогда походу не забуду этот ужасный звук долгого короткого замыкания – зуд с жужжанием.

Сейчас лежу в больнице, на коленке у меня ссадина, врачи думают, что меня било током, это выход, поэтому наблюдают за сердцем. Я же считаю, что током меня не било, а ожег на руке, был нанесен электрической дугой, которая возникла при замыкании.

Что там случилось, почему произошло замыкание мне пока не известно, думаю, при повороте винта, сдвинулся сам контакт и произошло замыкание фаза-фаза, либо сзади пакетного выключателя находился оголенный провод и при приближении винта возникла электрическая дуга . Узнаю позже, если разберутся.

Блин, сходил на перевязку, так руку замотали, что пишу одной левой теперь)))

Фото без бинтов делать не стал, очень не приятное зрелище. Не хочу пугать начинающих электриков….

Какие бывают меры защиты от электрической дуги, что могло меня защитить? Проанализировав интернет, увидел, что самым популярным средством защиты людей в электроустановках от электрической дуги является термостойкий костюм. В северной Америке большой популярностью пользуются специальные автоматы фирмы Siemens, которые защищают как от электрической дуги, так и от максимального тока. В России, на данный момент, подобные автоматы используются только на высоковольтных подстанциях. В моем случае мне бы хватило диэлектрической перчатки, но сами подумайте, как в них подключать светильники? Это очень неудобно. Также рекомендую использовать защитные очки, чтобы защитить глаза.

В электроустановках борьба с электрической дугой осуществляется с помощью вакуумных и масляных выключателей, а также при помощи электромагнитных катушек совместно с дугогасительными камерами.

Это все? Нет! Самым надежным способом обезопасить себя от электрической дуги, на мой взгляд, являются работы со снятием напряжения . Не знаю как вы, а я под напряжением работать больше не буду…

На этом моя статья электрическая дуга и защита от электрической дуги заканчивается. Есть что дополнить? Оставь комментарий.

Возникновение электрической дуги и её свойства, процессы вызывающие рождение и поддерживающие горение, а также конструктивные решения в коммутационных аппаратах для гашения дугового разряда.

Краткое содержание статьи:

Свойства электрической дуги или дугового разряда

В электротехнике (автоматические выключатели, рубильники, контакторы) при выключении нагруженной цепи рождается электрическая дуга.

Установим ограничения: далее описываются процессы характерные для аппаратов с номинальными токами от 1 до 2000 ампер и предназначенных для работы в сетях с напряжением до 1000 вольт (низковольтная аппаратура). Для высоковольтной аппаратуры существуют другие условия возникновения и горения дуги.

Важные параметры электрической дуги:

  • дуговой разряд способен развиться исключительно при высоких токах (для металла этот ток составляет 0,5 ампера);
  • температура в стволе дуги значительная и составляет порядка 6-18 тысяч кельвинов (зачастую 6-10 тысяч кельвинов);
  • снижение напряжения у катода незначительно и равно 10-20 вольтам.

Дуговой разряд условно разделяют на три зоны:

  • околокатодную;
  • ствол дуги (основная часть);
  • околоанодную.

В выделенных зонах ионизация и деионизация проходят различно:

  • ионизация - процесс распадения нейтрального атома на отрицательный электрон и положительный ион;
  • деионизация - процесс противоположный ионизации (антоним), при котором происходит слияние электрона и иона в нейтральную частицу.


В 2-минутном видеоролике представлена замедленная съёмка гашения электрической дуги в модульном автоматическом выключателе производства ABB:

Процессы сопутствующие рождению электрической дуги

На начальном этапе разведения главных контактов дуга зарождается при следующих процессах:

  • термоэлектронная эмиссия (освобождение отрицательных электронов из разогретой поверхности контакта);
  • автоэлектронная эмиссия (отрыв электронов из катода под влиянием значительного электрического поля).

Термоэлектронная эмиссия . При разрыве контактов в районе последней площадки контакта образуется зона с расплавленной медью с соответствующей температурой. Медь испаряется на отрицательном электроде из так называемого катодного пятна, которое является источником свободных электронов. На данный процесс оказывают влияние: температура и металл контактных поверхностей; он является достаточным для рождения электрической дуги, но не достаточным для поддержания её горения.

Автоэлектронная эмиссия . Воздушное пространство между контактами можно рассматривать как своеобразный конденсатор, ёмкость которого в первое мгновение неограниченна, а далее сокращается в зависимости от растущего разрыва между подвижным и неподвижным контактом. Описанный конденсатор постепенно подзаряжается и напряжение в нём сравнивается с напряжением главной цепи. Напряжённость электрического поля доходит до величин, при которых возникают условия для выхода электронов из поверхности не нагретого катода.

Соотношение влияния описанных процессов на зарождение дуги зависит от силы выключаемого тока, металла контактной группы, чистоты контактной поверхности, скорости разъединения контактов и иных факторов. Доминирование одного вида эмиссии над другим индивидуально.

Процессы поддерживающие горение дуги.

При помощи следующих механизмов взаимодействия частиц создаются условия для горения разряда:

  • ионизация толчком (разогнанный электрон врезается в нейтральную частицу и «выбивает» и неё электрон);
  • тепловая ионизация (разрушение нейтральных атомов значительными температурами).

Ионизация толчком . Свободный электрон с определённой скоростью способен разбить нейтральную частицу на электрон и ион. Вновь полученный электрон способен разорвать внутренние связи у следующей частицы, в результате получается цепная реакция. Скорость электрона является функцией от разности потенциалов на участке движения (достаточный потенциал для выбивания электрона: 13 - 16 вольт для кислорода, водорода, азота; 24 вольта для гелия; 7,7 вольта для медных паров).

Тепловая ионизация . При высоких температурах увеличиваются скорости движения частиц в плазме, что ведёт к разрушению нейтральных атомов по принципу ионизации толчком.

Единовременно с процессами ионизации проходят процессы деионизации за счёт рекомбинации (взаимный контакт «-» и «+» частиц ведёт к слиянию их в нейтральный атом) и диффузии (выход из ствола дуги электронов во внешнюю среду, где в нормальных условиях происходит их поглощение).

Существенным фактором для продолжения горения дуги в нашем случае является тепловая ионизация, поэтому для гашения разряда применяется охлаждение его ствола (контакт с материалом высокой теплопроводности), а также удлинение самой дуги в отведённом ей пространстве.

Методы гашения электрической дуги

Чтобы ограничить негативное воздействие электрической дуги на контакты коммутационного аппарата и его узлы, следует за кратчайшее время погасить дугу. К отрицательным воздействиям относят:

  • высокие температуры (оплавление, испарение контактного материала);
  • создание перешейков-проводников электрического тока (дуга легко проводит ток, поэтому может провести его на участки, которые не проводят ток при нормальной работе);
  • нарушение нормальной электрической схемы аппарата (разрушение изоляции).

Дуга - это частное проявление, одного из состояний вещества, называемого плазмой . Ствол дуги имеет высокие температуры и большое количество свободных ионов. Так как основным фактором, продлевающим горение, является тепловая ионизация , то нужно интенсивно охладить ствол электрической дуги. Для этих целей в коммутационных аппаратах применяются следующие конструктивные решения :

  • магнитное дутьё или нагнетание охлаждающёй жидкости или газа для того, чтобы удлинить дугу (бо льшая поверхность, больше отдаёт тепла);
  • деионная решётка или набор профилированных стальных пластин, которые единовременно работают радиаторами и расчленяют дугу на отдельные составляющие;
  • дугогасительная камера щелевого типа , выполненная из материала с большой теплопроводностью и стойкостью к высоким температурам (электрическая дуга, контактируя с материалом камеры, отдаёт тепловую энергию);
  • создание закрытого пространства из материала, выделяющего газ под воздействием температуры (высокое давление газов препятствует горению дуги);
  • специальные контактные сплавы для снижения содержания металлов в плазме;
  • откачивать воздух из околоконтактного пространства для создания вакуума (нет вещества - нет ионизации);
  • в аппаратах на переменный ток производить размыкание в момент перехода тока через ноль (меньше энергии для рождения дуги);
  • вводить в промежуток, между расходящимися контактами, полупроводники, которые воспримут ток и не дадут дуге разгореться;
  • применять двойной разрыв в цепи (исключая из цепи часть проводника, мгновенно и значительно увеличивается расстояние между катодом и анодом).

Список литературы

Марков А. М. Электрические и электронные аппараты. Часть 1. Электромеханические аппараты. - Псков: Издательство Псков ГУ, 2013 год - 128 с (ссылка на книгу на странице «Прайс-лист »).

При коммутации электрических приборов или перенапряжений в цепи между токоведущими частями может появится электрическая дуга. Она может использоваться в полезных технологических целях и в то же время нести вред оборудованию. В настоящее время инженеры разработали ряд методов борьбы и использования в полезных целях электрической дуги. В этой статье мы рассмотрим, как она возникает, ее последствия и область применения.

Образование дуги, её строение и свойства

Представим, что мы в лаборатории проводим эксперимент. У нас есть два проводника, например, металлических гвоздя. Расположим их острием друг к другу на небольшом расстоянии и подключим к гвоздям выводы регулируемого источника напряжения. Если постепенно увеличивать напряжение источника питания, то при определенном его значении мы увидим искры, после чего образуется устойчивое свечение подобное молнии.

Таким образом можно наблюдать процесс её образования. Свечение, которое образуется между электродами — это плазма. Фактически это и есть электрическая дуга или протекание электрического тока через газовую среду между электродами. На рисунке ниже вы видите её строение и вольт-амперную характеристику:

А здесь – приблизительные величины температур:

Почему возникает электрическая дуга

Всё очень просто, мы рассматривали в статье об , а также в статье о , что если любое проводящее тело (стальной гвоздь, например) внести в электрическое поле — на его поверхности начнут скапливаться заряды. При том, чем меньше радиус изгиба поверхности, тем их больше скапливается. Говоря простым языком — заряды скапливаются на острие гвоздя.

Между нашими электродами воздух — это газ. Под действием электрического поля происходит его ионизация. В результате всего этого возникают условия для образования электрической дуги.

Напряжение, при котором возникает дуга, зависит от конкретной среды и её состояния: давления, температуры и прочих факторов.

Интересно: по одной из версий это явление так называется из-за её формы. Дело в том, что в процессе горения разряда воздух или другой окружающий её газ разогревается и поднимается вверх, в результате чего происходит искажение прямолинейной формы и мы видим дугу или арку.

Для зажигания дуги нужно либо преодолеть напряжение пробоя среды между электродами, либо разорвать электрическую цепь. Если в цепи есть большая индуктивность, то, согласно законам коммутации, ток в ней не может прерваться мгновенно, он будет протекать и далее. В связи с этим будет возрастать напряжение между разъединенными контактами, а дуга будет гореть пока не исчезнет напряжение и не рассеется энергия, накопленная в магнитном поле катушки индуктивности.

Рассмотрим условия зажигания и горения:

Между электродами должен быть воздух или другой газ. Для преодоления напряжения пробоя среды потребуется высокое напряжение в десятки тысяч вольт – это зависит от расстояния между электродами и других факторов. Для поддержания горения дуги достаточно 50-60 Вольт и тока в 10 и больше Ампер. Конкретные величины зависят от окружающей среды, формы электродов и расстояния между ними.

Вред и борьба с ней

Мы рассмотрели причины возникновения электрической дуги, теперь давайте разберемся какой вред она наносит и способы её гашения. Электрическая дуга наносит вред коммутационной аппаратуре. Вы замечали, что, если включить мощный электроприбор в сеть и через какое-то время выдернуть вилку из розетки — происходит небольшая вспышка. Это дуга образуется между контактами вилки и розетки в результате разрыва электрической цепи.

Важно! Во время горения электрической дуги выделяется много тепла, температура её горения достигает значений более 3000 градусов Цельсия. В высоковольтных цепях длина дуги достигает метра и более. Возникает опасность как нанесения вреда здоровью людей, так и состоянию оборудования.

Тоже самое происходит и в выключателях освещения, другой коммутационной аппаратуре среди которых:

  • автоматические выключатели;
  • магнитные пускатели;
  • контакторы и прочее.

В аппаратах, которые используются в сетях 0,4 кВ, в том числе и привычные 220 В, используют специальные средства защиты – дугогасительные камеры. Они нужны чтобы уменьшить вред, наносимый контактам.

В общем виде дугогасительная камера представляет собой набор проводящих перегородок особой конфигурации и формы, скрепленных стенками из диэлектрического материала.

При размыкании контактов образовавшаяся плазма изгибается в сторону камеры дугогашения, где разъединяется на небольшие участки. В результате она охлаждается и гасится.

В высоковольтных сетях используют масляные, вакуумные, газовые выключатели. В масляном выключателе гашение происходит коммутацией контактов в масляной ванне. При горении электрической дуги в масле оно разлагается на водород и газы. Вокруг контактов образуется газовый пузырь, который стремиться вырваться из камеры с большой скоростью и дуга охлаждается, так как водород обладает хорошей теплопроводностью.

В вакуумных выключателях не ионизируются газы и нет условий для горения дуги. Также есть выключатели, заполненные газом под высоким давлением. При образовании электрической дуги температура в них не повышается, повышается давление, а из-за этого уменьшается ионизация газов или происходит деионизация. Перспективным направлением считаются .

Также возможна коммутация при нулевом значении переменного тока.

Полезное применение

Рассмотренное явление нашло и целый ряд полезных применений, например:


Теперь вы знаете, что такое электрическая дуга, какие причины возникновения данного явления и возможные сферы применения. Надеемся, предоставленная информация была для вас понятной и полезной!

Материалы